期刊文献+

CPU的多层次并行调度优化模型仿真

GPU Multi-Level Parallel Scheduling Optimization Model for Simulation
下载PDF
导出
摘要 通过CPU多调度模式优化,提高CPU运行效率。由于海量数据进行运算的过程中,存在调试不均衡的问题,传统的CPU调度模型不能很好的均衡所有的调度任务关系,无法满足数据运算的实际需求,导致CPU负载不均衡,降低了调度效率。提出基于二叉树搜索算法的CPU多层次并行调度方法。针对CPU中不同层次的任务量进行预测,建立多层次并行调度模型,实现海量调度任务的多层次并行调度。在每个层次中,进行二叉树搜索,完成各个层次独立的CPU任务调度,将二叉树搜索方法运用到多层次并行调度模型中,完成CPU的多层次并行调度。实验结果表明,利用改进算法进行CPU多层次并行调度,能够提高调度效率,缩短调度时间,完成CPU合理调度,保证CPU的运算速率。 CPU scheduling model affects the operating efficiency more directly. For huge amounts of data in the process of operation,the traditional CPU scheduling model cannot balance all the relations of scheduling tasks very well, cannot satisfy the needs of data operation ,which causes the CPU load imbalance and reduces the scheduling effi- ciency. The paper proposed a multi - level parallel CPU scheduling method based on binary tree search algorithm. Aiming at different levels in CPU quota, the paper established a multi - level parallel scheduling model to realize the multilevel parallel scheduling of mass scheduling tasks. In each level, the binary tree search completed all levels in- dependent of CPU scheduling, and the binary tree search method was applied to the multi - level parallel scheduling model, to complete CPU multi -level parallel scheduling. Experimental results show that the improved algorithm for CPU multi - level parallel scheduling, can improve the efficiency of the scheduling, shorten operation time, complete the reasonable CPU scheduling, and ensure the operation rate of the CPU.
作者 文颖
出处 《计算机仿真》 CSCD 北大核心 2014年第12期359-363,共5页 Computer Simulation
关键词 任务调度 并行 二叉树搜索 Task scheduling Parallel Binary search tree
  • 相关文献

参考文献10

  • 1任佳,高晓光,郑景嵩,张艳.复杂环境下的无人机任务决策模型[J].系统工程与电子技术,2010,32(1):100-103. 被引量:17
  • 2潘峰,陈杰,任智平,王光辉.基于计算智能方法的无人机任务指派约束优化模型研究[J].兵工学报,2009,30(12):1706-1713. 被引量:6
  • 3Jia Zeng,Xiaoke Yang,Lingyu Yang,Gongzhang Shen.Modeling for UAV resource scheduling under mission synchronization[J].Journal of Systems Engineering and Electronics,2010,21(5):821-826. 被引量:2
  • 4T Benoist,B Rottembourg. Upper bounds for revenue maximization in a satellite scheduling problem[ J ]. 4OR:A Quarterly Journal of Operations Research,2004, (3) : 235 - 249.
  • 5P Wang, G Reineh, P Gao. A model, a heuristic and a decision support system to solve the scheduling problem of an earth observ- ing satellite constellation[J]. Computers & Industrial Engineering, 2011, (2) :322 -335.
  • 6D Habet, M Vasquez, Y Vimont. Bounding the optimum for the problem of scheduling the photographs of an agile earth observing satellite[ J]. Computational Optimization and Applications, 2008, (2) :307 -333.
  • 7I Foster, C Kesselman, S Tuecke. The anatomy of the grid: Enab- ling scalable virtual organization[ J]. International Journal of High Performance Computing Applications,2001, ( 3 ) :200 - 222.
  • 8X Qin, T Xie. An availability - aware task scheduling for heteroge- neous systems[ J]. IEEE Transaction on Computer,2008, (2) :188 - 199.
  • 9Zhu Min, Guo Wei, Xiao Shilin. Availability- driven scheduling for real- time directed acyclic graph applications in optical grids [ J ]. Journal of Optical Communications and Networking, 2010, (7) : 469 - 480.
  • 10A J Page, T J Naughton. Dynamic task scheduling using genetic algorithms for heterogeneous distributed computing [ J ]. Denver, USA : IEEE Computer Society,2005 : 189 - 197.

二级参考文献28

  • 1管文艳,韩亮.低空突防模型建模的研究[J].系统仿真学报,2006,18(z2):77-79. 被引量:13
  • 2周锐,成晓静,余舟毅,池沛,陈宗基.智能化战术飞行轨迹规划方法研究[J].控制与决策,2005,20(2):222-225. 被引量:12
  • 3王和平,柳长安,李为吉.基于蚁群算法的无人机任务规划[J].西北工业大学学报,2005,23(1):98-101. 被引量:11
  • 4余翔,王新民,李俨.无人直升机路径规划算法研究[J].计算机应用,2006,26(2):494-495. 被引量:6
  • 5李士波,孙秀霞,王栋,张力.无人机动态环境实时航迹规划[J].系统工程与电子技术,2007,29(3):399-401. 被引量:17
  • 6Schumacher C, Chandler P R, Pachter M, et at. Optimization of air vehicle operations using mixed-integer linear programming JR]. US: AIR FORCE Research Lab (AFRL/VACA) Wright- Paterson AFB OH Control Theory Optimization Branch, 2006.
  • 7Schumacher C, Chandler P, Pachter L. UAV task assignment with timing constraints via mixed-integer linear programming[ C] //AIAA 3rd Unmanned Unlimited Systems Conference. US: AIAA, 2004.
  • 8Alighanbari M, Alighanbari M, Kuwata Y, et al. Coordination and control of multiple UAVs with timing constraints and loitering [C]//Proc of the 2003 American Control Conference. Denver, CO, US: ACC, 2003.
  • 9Guo W, Nygard K E, Kamel A. Combinatorial trading mechanism for task allocation[C]//Proc the 14th International Conference on Computer Applications in Industry and Engineering. Las Vegas, Nevada, US: ISCA, 2001.
  • 10Arulselvan A, Commander C W, Pardalos P M. A hybrid genetic algorithm for the target visitation problem[EB/OL]. [2009 -04 - 01]. http://plaza, ufl. edu/clayton8/hgaTVP, pdf.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部