期刊文献+

具有共振的分数阶微分方程边值问题解的存在性 被引量:3

Existence of solutions for fractional differential equation boundary value problems at resonance
下载PDF
导出
摘要 通过选择恰当的Banach空间及其范数,定义合适的投影算子,利用Mawhin重合度理论和分数阶微分以及分数阶积分的性质,在Riemann-Stieltjes积分边界条件下,研究非线性项中含有分数阶导数且具有共振的分数阶(n-1,1)共轭边值问题解的存在性,其中的非线性项可以是不连续的,并给出一个例子说明了主要结论。 By defining appropriate Banach space and norm, giving the appropriate projectors , using the coincidence degree theory due to Mawhin and the properties of fractional derivative and integral, the existence of solutions for fractional (n-1,1) conjugate boundary value problems with the Riemann-Stieltjes integral boundary condition at resnonce is investigagted, where the nonlinear term contains fractional-order derivative and may be noncontinuous . An example is given to illustrate the main results.
出处 《河北科技大学学报》 CAS 2014年第6期518-523,共6页 Journal of Hebei University of Science and Technology
基金 国家自然科学基金(11171088) 河北省自然科学基金(A2013208108)
关键词 RIEMANN-STIELTJES积分 共振 分数阶数微分方程 重合度理论 Riemann-Stieltjes integral resonance fractional differential equation coincidence degree theory
  • 相关文献

参考文献13

  • 1ELOE P W,HENDERSON J.Positive solutions for (n-1,1) conjugate boundary value problems[J].Nonlinear Anal,1997 (28):1669-1680.
  • 2ELOE P W,HENDERSON J.Singular nonlinear (k,n-h) conjugate boundary value problems[J].J Differential Equations,1997(133):136-151.
  • 3AGRWAL R P,O'REGAN D.Multiplicity results for singular conjugate,focal,and (N,P) problems[J].J Differential Equations,2001(170):142-156.
  • 4ELOE P W,AHMAD B.Positive solutions of a nonlinear n-th order boundary value problem with nonlocal conditions[J].Appl Math Lett,2005(18):521-527.
  • 5JIANG W.Multiple positive solutions for nth-order m-point boundary value problems with all derivatives[J].Nonlinear Anal,2008(68):1064-1072.
  • 6WEBB J R L.Nonlocal conjugate type boundary value problems of higher order[J].Nonlinear Anal,2009(71):19331940.
  • 7JIANG W.Solvability of (k,n-k) conjugate boundary-value problems at resonance,Electron[J].J Differential Equations,2012(12):1-10.
  • 8WANG Y,LIU L,WU Y.Positive solutions for nonlocal fractional differential equations[J].Nonlinear Anal,2011(74):3599-3605.
  • 9YUAN C.Multiple positive solutions for (n-1,1)-type semipositive conjugate boundary value problems of nonlinear fractional differential equations,Electron[J].J Qual Theory differ Equ,2010,(10):1-12.
  • 10MAWHIN J.Topological degree methods in nonlinear boundary value problems,in:NSFCBMS regional conference series in mathematics[J].Amer Math Soc Providence,RI.1979(15):28-39.

同被引文献24

  • 1BITSADZE A V,SAMARSKIA A.Some elementary generalizations of linear elliptic boundary value problems[J].Doklal Akad Nauk SSSR,1969,185:739-742.
  • 2MOISEEV E I,IL’IN V A.Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator[J].Differential Equations,1987,23:979-987.
  • 3MA Ruyun.Positive solutions of a nonlinear three-point boundary value problem[J].Electron Journal of Differential Equations,1999,34:1-8.
  • 4YANG Liu,LIU Xiping,JIA Mei.Multiplicity results for second-order m-point boundary value problem[J].Journal of Mathematical Analysis and Applications,2006,324(1):532-542.
  • 5HAN Xiaoling.Positive solutions for a three-point boundary value problem at resonance[J].Journal of Mathematical Analysis and Applications,2007,336(1):556-568.
  • 6MA Ruyun.Multiplicity results for a three-point boundary value problem at resonance[J].Nonlinear Analysis,2003,53(6):777-789.
  • 7HENDERSON J.Double solutions of three-point boundary-value problems for second-order differential equations[J].Electron Journal of Differential Equations,2004,115:1-7.
  • 8AGARWAL R P,O’REGAN D.Some new existence results for differential and integral equations[J].Nonlinear Anal,1997,29(6):679-692.
  • 9ZHANG Guowei,SUN Jingxian.Positive solutions of m-point boundary value problems[J].Journal of Mathematical Analysis and Applications,2004,291(2):406-418.
  • 10BAI Chuanzhi,FANG Jinxuan.Existence of positive solutions for three-point boundary value problems at resonance[J].Journal of Mathematical Analysis and Applications,2004,291(2):538-549.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部