期刊文献+

基于极限学习机的股票价格预测 被引量:3

Stock Price Forecasting Based on Extreme Learning Machine
下载PDF
导出
摘要 极限学习机(Extreme Learning Machine,ELM)是一种新型的单馈层神经网络算法,克服了传统的误差反向传播方法需要多次迭代,算法的计算量和搜索空间大的缺点,只需要设置合适的隐含层节点个数,为输入权和隐含层偏差进行随机赋值,一次完成无需迭代。研究表明股票市场是一个非常复杂的非线性系统,需要用到人工智能理论、统计学理论和经济学理论。本文将极限学习机方法引入股票价格预测中,通过对比支持向量机(Support Vector Machine,SVM)和误差反传神经网络(Back Propagation Neural Network,BP神经网络),分析极限学习机在股票价格预测中的可行性和优势。结果表明极限学习机预测精度高,并且在参数选择及训练速度上具有较明显的优势。 Extreme learning machine ( ELM ) is a new learning algorithm of single-hidden layer feed-forward neural network ( SLFNs) , and overcomes the disadvantages of the classical learning algorithm in neural network method ’ s multiple iterations , huge search space and a large number of calculations , only needs to set the appropriate numbers of hidden layer nodes , assigns the weight of input and deviation of hidden layers without iteration .Research shows that the stock market is a very complex non-linear system , we need to use artificial intelligence theory , statistics theory and economic theory to study the stock price forecast . In this paper , ELM is introduced in predicting the stock price , and by comparing with SVM and BP , we analyze its feasibility and advantage in stock price prediction .The experiment results show that ELM is of high accuracy of prediction and obvious advanta -ges in parameter selection and learning speed .
作者 廖洪一 王欣
出处 《计算机与现代化》 2014年第12期19-22,共4页 Computer and Modernization
关键词 极限学习机 股票价格 预测模型 支持向量机 神经网络 extreme learning machine stock price prediction model support vector machine neural network
  • 相关文献

参考文献16

二级参考文献101

  • 1佟晓筠,崔明根.基于扰动的复合混沌序列密码的图像反馈加密算法[J].中国科学(F辑:信息科学),2009,39(6):588-597. 被引量:7
  • 2杨建刚,戴德成,高亹,曹祖庆.改进BP网络在旋转机械故障诊断中的应用[J].振动工程学报,1995,8(4):342-350. 被引量:17
  • 3卢山,王海燕.多变量时间序列最大李雅普诺夫指数的计算[J].物理学报,2006,55(2):572-576. 被引量:22
  • 4[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 5[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 6[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 7[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 8[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 9[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 10[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31

共引文献518

同被引文献34

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部