期刊文献+

基于高阶线性矩法的洪水设计值研究 被引量:5

Application of high-order L-moments to flood quantile estimation
原文传递
导出
摘要 为了提高大重现期洪水设计值计算精度,研究高阶线性矩法在洪水频率分析计算中的应用。应用蒙特卡洛试验研究不同阶线性矩的统计特性和对设计值的影响。以陕西省5个测站年最大洪峰流量序列为例,进行广义极值分布高阶线性矩的参数估计,评价拟合效果和设计值的计算偏差。结果表明,高阶线性矩法具有良好的统计特性;与普通线性矩法比较,高阶线性矩法能更好拟合洪水序列的大洪水值,且设计值估计偏差小。因此,高阶线性矩法是一种合理可行的参数估计方法,以期为大重现期设计洪水值的计算提供依据。 To improve the calculation accuracy of design flood for long return period, this paper studies application of high-order L-moments to flood frequency analysis, focusing on Monte-Carlo simulations for statistical properties of the L-moments method and its influences on the return period flood quantile. Parameters of GEV distribution and high-order L-moments were estimated for five annual maximum flow series observed in Shaanxi province, and the fitting effect and calculation error of flood quantile evaluated. The results show that this method has good statistical performance in flood analysis of long return period and it gives a representation of the data series better than the lower-order methods.
出处 《水力发电学报》 EI CSCD 北大核心 2014年第6期30-38,96,共10页 Journal of Hydroelectric Engineering
基金 国家自然科学基金项目(51179160 50879070 51079037) 高等学校博士学科点专项科研基金(20110204110017)
关键词 水文学 参数估计 洪水设计值 高阶线性矩 广义极值分布 hydrology parameter estimation flood quantile higher-order L-moments GEV distribution
  • 相关文献

参考文献17

  • 1刘攀,郭生练,闫宝伟,李响,陈璐.再论分期设计洪水频率与防洪标准的关系[J].水力发电学报,2011,30(1):187-192. 被引量:10
  • 2刘依松.不同设计洪水计算方法的比较[J].水力发电学报,2012,31(6):39-43. 被引量:9
  • 3王俊珍,宋松柏.具有历史洪水资料的期望矩法参数估计研究[J].水力发电学报,2014,33(2):8-18. 被引量:7
  • 4Wang Q J. Estimation of the GEV distribution from censored samples by method of partial probability weighted moments [J]. Journal of Hydrology, 1990, (120): 103 - 114.
  • 5Wang Q J. Using partial probability weighted moments to fit the extreme value distributions to censored samples [J]. Water Resources Research, 1996, 32(6): 1767-1771.
  • 6Pandey M D. Extreme quantile estimation using order statistics with minimum cross-entropy principle [J]. Engineering Mechanics, 2001, (16):31-42.
  • 7Pandey M D. Minimum cross-entropy method for extreme value estimation using peaks-over-threshold data [J]. Structural Safety, 2001, (23):345-363.
  • 8Deng Jian, Pandey M D. Using partial probability weighted moments and partial maximum entropy to estimate quantile from censored samples [J]. Engineering Mechanics, 2009, (24):407-417.
  • 9Deng Jian, Pandey M D. Cross entropy quantile function estimation from censored samples using partial probability weighted moments [J]. Journal of Hydrology, 2008, (363): 18-31.
  • 10詹道江,徐向阳,陈元芳.工程水文学[M].北京:中国水利水电出版社,2011.

二级参考文献45

共引文献54

同被引文献36

  • 1李桃英.陕西省灾害性洪水类型及成因分析[J].水文,2004,24(4):39-42. 被引量:11
  • 2邓育仁,丁晶.水文计算中的模糊优化适线法[J].水文科技信息,1995,12(3):16-19. 被引量:6
  • 3金光炎.矩、概率权重矩与线性矩的关系分析[J].水文,2005,25(5):1-6. 被引量:21
  • 4邓育仁 丁晶 韦雪艳.水文计算中的模糊优化适线法.水电站设计,1995,11(4):43-47.
  • 5詹道江,徐向阳,陈元芳.工程水文学[M].北京:中国水利水电出版社,2011.
  • 6Wang Q J. Using higher probability weighted moments for flood frequency analysis [J]. Journal of Hydrology, 1997, 194(1): 95-106.
  • 7Wang Q J. LH moments for statistical analysis of extreme events [J]. Water Resources Research, 1997, 33(12):2841-2848.
  • 8Bhattarai K P. Partial L-moments for the analysis of censored flood sample s [J]. Hydrological Sciences, 2004, 49(5): 855-868.
  • 9Wang Q J. Estimation of GEV distribution from censored samples by method of partial probability weighted Moments [J]. Journal of Hydrology, 1990, (120): 103-114.
  • 10Wang Q J. Using partial probability weighted moments to fit the extreme value distributions to censored samples [J]. Water Resources Research, 1996, 32(6): 1767-1771.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部