期刊文献+

A Prenyltransferase Gene Confirmed to Be a Carotenogenic CRTE Gene from Sweetpotato 被引量:1

A Prenyltransferase Gene Confirmed to Be a Carotenogenic CRTE Gene from Sweetpotato
原文传递
导出
摘要 Sweetpotato (Ipomoea batatas L. Lain.) ranks fifth among the most important food crops, after rice, wheat, maize and cas- sava, on a fresh-weight basis in developing countries (Scott and Maldonado, 1999). Sweetpotato cultivars have white, yellow, purple or orange flesh, but only orange-fleshed sweetpotato cultivars are the rich sources of β-carotene, which is the precursor of vitamin A (Failla et al., 2009). Accordingly, the orange-fleshed sweetpotato is the main source of 6-carotene for the people in underdeveloped coun- tries in Africa and Southeast Asia. Unfortunately, theβ-caro- tene content in most sweetpotato cultivars is rather low and insufficient in meeting the normal demand of human physi- ology (Liao et al., 2008). Hence, developing sweetpotato cultivars rich inβ-carotene will be most desirable in crop development. Sweetpotato (Ipomoea batatas L. Lain.) ranks fifth among the most important food crops, after rice, wheat, maize and cas- sava, on a fresh-weight basis in developing countries (Scott and Maldonado, 1999). Sweetpotato cultivars have white, yellow, purple or orange flesh, but only orange-fleshed sweetpotato cultivars are the rich sources of β-carotene, which is the precursor of vitamin A (Failla et al., 2009). Accordingly, the orange-fleshed sweetpotato is the main source of 6-carotene for the people in underdeveloped coun- tries in Africa and Southeast Asia. Unfortunately, theβ-caro- tene content in most sweetpotato cultivars is rather low and insufficient in meeting the normal demand of human physi- ology (Liao et al., 2008). Hence, developing sweetpotato cultivars rich inβ-carotene will be most desirable in crop development.
出处 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2014年第11期613-616,共4页 遗传学报(英文版)
基金 supported by the National High-tech R&D Program(863 Program)(Nos.2011AA10A206 and 2012AA101204-3) Program for New Century Excellent Talents in University(No.NCET-12-0930) Fundamental Research Funds for the Central Universities(No.XDJK2013A024) the earmarked fund for China Agriculture Research System (No.CARS-11-C-20)
  • 相关文献

参考文献2

二级参考文献152

  • 1Dong-Hui Liu,Hong-Bin Jin,Yu-Hui Chen,Li-Jie Cui,Wei-Wei Ren,Yi-Fu Gong,Ke-Xuan Tang.Terpenoid Indole Alkaloids Biosynthesis and Metabolic Engineering in Catharanthus roseus[J].Journal of Integrative Plant Biology,2007,49(7):961-974. 被引量:7
  • 2Lange, B.M., and Ghassemian, M. (2003). Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol. Biol. 51,925-948.
  • 3Lange, B.M., and Ghassemian, M. (2005). Comprehensive post-genomic data analysis approaches integrating biochemical pathway maps. Phytochemistry. 66, 413-451.
  • 4Larkin, R.M., Alonso, J.M., Ecker, J.R., and Chory, J. (2003). GUN4, a regulator of chlorophyll synthesis and intracellular signalling. Science. 299, 902-906.
  • 5Li, Z., Wakao, S., Fischer, B.B., and Niyogi, K.K. (2009). Sensing and responding to excess light. Annu. Rev. Plant. Biol. 60, 239-260.
  • 6Lichtenthaler, H.K. (2007). Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 92, 163-179.
  • 7Lichtenthaler, H.K., Prenzel, U., Douce, R., and Joyard, J. (1981). Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim. Biophys, Acta. 641, 99-105.
  • 8Lichtenthaler, H.K., Schwender, J., Disch, A., and Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 400, 271-274.
  • 9Lohmann, A., Schottler, M.K., Brehelin, C., Kessler, F., Bock, R., Cahoon, E.B., and Dormann, P. (2006). Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem Ⅰ abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J. Biol. Chem. 281, 40461-40472.
  • 10Majeran, W., Zybailov, B., Ytterberg, A.J., Dunsmore, J., Sun, Q., and van Wijk, K.J. (2008). Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell. Proteomics. 7, 1609-1638.

共引文献33

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部