期刊文献+

基于匹配扩散的多视稠密深度图估计 被引量:1

Multi-view Dense Depth Map Estimation through Match Propagation
下载PDF
导出
摘要 提出一种高精度的基于匹配扩散的稠密深度图估计算法.算法分为像素级与区域级两阶段的匹配扩散过程.前者主要对视图间的稀疏特征点匹配进行扩散以获取相对稠密的初始深度图;而后者则在多幅初始深度图的基础上,根据场景分段平滑的假设,在能量函数最小化框架下利用平面拟合及多方向平面扫描等方法解决存在匹配多义性问题区域(如弱纹理区域)的深度推断问题.在标准数据集及真实数据集上的实验表明,本文算法对视图中的光照变化、透视畸变等因素具有较强的适应性,并能有效地对弱纹理区域的深度信息进行推断,从而可以获得高精度、稠密的深度图. The paper proposes a highly accurate multi-view dense depth map estimation algorithm through match propagation. The algorithm is composed of two match propagation processes: a pixel-level propagation process and a region-level propagation process. The former mainly propagates sparse feature matches between views to obtain an initial depth map, the latter, based on multiple initial depth maps and piecewise planar scene assumption, tackles the matching ambiguity problem of some regions (e.g. low texture region) by adopting plane fitting and multiple direction plane sweeping within the framework of minimizing some special energy function. Experiments on standard data set and real-world data set show that our proposed algorithm not only has better adaptability to many factors, e.g. perspective distortion and illumination variance, but also can effectively resolve the depth estimation problem of low texture regions and obtain more accurate and dense depth maps.
出处 《自动化学报》 EI CSCD 北大核心 2014年第12期2782-2796,共15页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2013AA12A202) 国家自然科学基金(61203278)资助~~
关键词 弱纹理 匹配扩散 平面扫描 能量函数 深度图 Low texture, match propagation, plane sweeping, energy function, depth map
  • 相关文献

参考文献33

  • 1Shen S. Accurate multiple view 3D reconstruction using patch-based stereo for large-scale scenes. IEEE Transactions on Image Processing, 2013, 22(3): 1901-1914.
  • 2Tola E, Strecha C, Fua P. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Machine Vision and Applications, 2012, 23(5): 903-920.
  • 3Wang L, Yang R G. Global stereo matching leveraged by sparse ground control points. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recog- nition. Providence, RI: IEEE, 2011. 3033-3040.
  • 4Juho K, Brandt S S. Quasi-dense wide baseline matching using match propagation. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8.
  • 5Koskenkorva P, Kannala J, Brandt S S. Quasi-dense wide baseline matching for three views. In: Proceedings of the 2010 IEEE Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010. 806-809.
  • 6Taguchi Y, Wilburn B, Zitnick C L. Stereo reconstruc- tion with mixed pixels using adaptive over-segmentation. In: Proceedings of the 2008 IEEE Conference on Computer Vi- sion and Pattern Recognition. Anchorage, AK: IEEE, 2008. 1-8.
  • 7Wang Z F, Zheng Z G. A region based stereo matching al- gorithm using cooperative optimization. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE, 2008. 1-8.
  • 8Bleyer M, Gelautz M. A layered stereo matching algorithm using image segmentation and global visibility constraints. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(3): 128-150.
  • 9Wang D L, Lim K B. Obtaining depth map from segment- based stereo matching using graph cuts. Journal of VJsuaJ Communication and Image Representation, 2011, 22(4): 325-331.
  • 10Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dis- similarity measure. In: Proceedings of the 2006 IEEE Con- ference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 15-18.

二级参考文献24

  • 1Harris C, Stephens M J. A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference. Mancherster, UK: Springer, 1988. 147-151.
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Matas J, Chum O, Martin U, Pajdla T. Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference. London, UK: Springer, 2002. 384-393.
  • 4Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors. International Journal of Computer Vision, 2004, 60(1): 63-86.
  • 5Scharstein D, Szeliskl R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1-3): 7-42.
  • 6Seitz S M, Dyer C R. Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision, 1999, 35(2): 151-173.
  • 7Kutulakos K N, Seitz S M. A theory of shape by space carv- ing. International Journal of Computer Vision, 2000, 38(3): 199-218.
  • 8Kolmogorov V, Zabih R. Multi-camera scene reconstruction via graph cuts. In: Proceedings of the 7th European Conference on Computer Vision. London, UK: Springer-Verlag, 2002. 82-96.
  • 9Lhuillier M, Quan L. Match propagation for image-based modeling and rendering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(8): 1140--1146.
  • 10Lhuillier M, Quan L. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 418-433.

共引文献23

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部