期刊文献+

Neural Network-based Adaptive State-feedback Control for High-order Stochastic Nonlinear Systems 被引量:3

Neural Network-based Adaptive State-feedback Control for High-order Stochastic Nonlinear Systems
下载PDF
导出
摘要 This paper focuses on investigating the issue of adaptive state-feedback control based on neural networks(NNs)for a class of high-order stochastic uncertain systems with unknown nonlinearities. By introducing the radial basis function neural network(RBFNN) approximation method, utilizing the backstepping method and choosing an approximate Lyapunov function, we construct an adaptive state-feedback controller which assures the closed-loop system to be mean square semi-global-uniformly ultimately bounded(M-SGUUB). A simulation example is shown to illustrate the effectiveness of the design scheme. This paper focuses on investigating the issue of adaptive state-feedback control based on neural networks(NNs)for a class of high-order stochastic uncertain systems with unknown nonlinearities. By introducing the radial basis function neural network(RBFNN) approximation method, utilizing the backstepping method and choosing an approximate Lyapunov function, we construct an adaptive state-feedback controller which assures the closed-loop system to be mean square semi-global-uniformly ultimately bounded(M-SGUUB). A simulation example is shown to illustrate the effectiveness of the design scheme.
出处 《自动化学报》 EI CSCD 北大核心 2014年第12期2968-2972,共5页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of China(61104222,61305149) Natural Science Foundation of JiangsuProvince(BK2011205) 333 High-Level Talents Training Program inJiangsu Province Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(11KJB510026) Natural Science Foundation of Jiangsu Normal University(11XLR08)
关键词 径向基函数神经网络 状态反馈控制器 随机非线性系统 自适应 高阶 LYAPUNOV函数 非线性问题 不确定系统 backstepping uncertain RBFNN illustrate stochastic utilizing ultimately uniformly introducing radial
  • 相关文献

参考文献14

  • 1Sanner R M, Slotine J J. Gaussian networks for direct adap- tive control. IEEE Transactions on Neural Networks, 1992, 3(6): 837-863.
  • 2Wang T, Tong S O, Li Y M. Adaptive neural network out- put feedback control of stochastic nonlinear systems with dy- namical uncertainties. Neural Computing and Applications, 2013, 23(5): 1481-1494.
  • 3Hsu C F. Adaptive backstepping Elman-based neural con- trol for unknown nonlinear systems. Neurocomputing, 2014, 136(16): 170-179.
  • 4Gao H T, Zhang T P, Xia X N. Adaptive neural control of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. Journal of the Franklin Institute, 2014, 351(6): 3182-3199.
  • 5Psillakis H E, Alexandridis A T. NN-based adaptive tracking control of uncertain nonlinear systems disturbed by unknown eovariance noise. IEEE Transactions on Neura/ Networks, 2007, 18(6): 1830-1835.
  • 6Krstid M, Deng H. Stabilization of Nonlinear Uncertain Sys- tems. New York: Springer-Verlag, 1998.
  • 7Mao X R. Stochastic Differential Equations and Their Ap- plications. Chichester: Horwood Publishing, 2007.
  • 8Deng H, Krsti6 M. Output-feedback stochastic nonlinear sta- bilization. IEEE Transactions on Automatic Control, 1999, 44(2): 328-333.
  • 9Zhou Q, Shi P, Xu S Y, Li H Y. Observer-based adap- tive neural network control for nonlinear stochastic systems with time-delay. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 71-80.
  • 10Sun Z Y, Sun W, Liu Z G. Global adaptive stabilization of high-order nonlinear systems with zero dynamics. Acta Automatica Sinica, 2012, 38(6): 1025-1032.

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部