期刊文献+

一种超细晶材料的混合硬化模型及其数值模拟

A Mixed Hardening Model of Ultrafine-grained Materials and Numerical Simulation
下载PDF
导出
摘要 针对超细晶材料强度高、塑性能力不佳以及饱和应力跟晶粒尺寸和应变率等因素有关的特点,在Johnson-Cook模型的基础上引入Hall-Petch关系式,再与Armstrong-Frederick非线性随动硬化规律进行叠加,提出一种同时包含各向同性硬化和非线性随动硬化的混合硬化模型。该数学模型不仅考虑了超细晶材料的尺寸效应,还计及了加工硬化和包辛格效应的组合效应。在推导出该混合硬化模型的积分算法的基础上进行有限元数值分析和试验数据的对比分析。对比结果表明,不同晶粒大小与不同应变率下的超细晶材料的数值仿真结果与试验数据均吻合较好,进而证明该数学模型的合理性。因此,该混合硬化模型不仅丰富了塑性力学的内容,也可为超细晶材料的结构件设计提供一定的理论依据。 Although the strength of ultrafine-grained materials is very good, their plastic behaviour is poor. Besides, their saturation stress relates to the grain size and the strain rate. According to the above properties, based on the Johnson-Cook model which incorporates Hall-Petch relation and then combines with Armstrong-Frederick type nonlinear kinematic hardening rule, a mixed hardening constitutive equation containing isotropic hardening rule and nonlinear kinematic hardening is put forward. The mixed hardening constitutive equation considers the size effect of ultrafine-grained materials as well as the combination of work hardening effect and Bauschinger effect. After the integral algorithm of the mixed hardening constitutive equation is deduced, the analysis of numerical simulation and comparison between the numerical results and the experimental data are performed finally. The comparison result shows that the numerical simulation results are agree well with the experimental data. Hence, it is proved that the mixed hardening constitution equation is rational. Therefore, the mixed hardening constitution equation does not only rich the theory of plasticity, but also provides a certain theoretical foundation for ultrafine-grained structural components design.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第20期77-83,共7页 Journal of Mechanical Engineering
基金 广西教育厅科研(201106LX036) 广西大学科研基金(XBZ110451)资助项目
关键词 超细晶材料 积分算法 混合硬化 晶粒尺寸 应变率 ultrafine-grain material integral algorithm mixed hardening grain size strain rate
  • 相关文献

参考文献11

  • 1YAMANAKA K, MORI M, CHIBA A. Mechanical properties of as-forged Ni-free Co-29Cr-6Mo alloys with ultrafine-grained microstructure[J]. Materials Science and Engineering: A, 2011, 528(18): 5961-5966.
  • 2刘晓燕,赵西成,杨西荣,何晓梅.ECAP变形制备超细晶金属材料变形行为的研究进展[J].材料导报,2011,25(9):11-15. 被引量:13
  • 3ARMSTRONG P J, FREDERICK C O. A mathematical representation of the multiaxial Bauschinger effect[R]. CEGB Report RD/B/N731, 1996.
  • 4ZAVERL J R, LEE D. A constitutive model of cyclic plasticity[J]. Nuclear Materials, 1978(75): 14-24.
  • 5KHAN A S, ZHANG Haoyue, TAKACS L. Mechanical response and modeling of fully compacted nanocrystalline iron and copper[J]. International Journal of Plasticity, 2000, 16(12): 1459-1476.
  • 6KHANA S, SUH Y S, CHEN X, et al. Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J]. International Journal of Plasticity, 2006, 22(2). 195-209.
  • 7李宏伟,杨合,郭玲,李兰云,郭良刚.混合硬化弹塑性本构关系及其在环件冷辗扩模拟中的应用[J].机械工程学报,2005,41(7):119-125. 被引量:9
  • 8庄京彪,刘迪辉,李光耀.基于包辛格效应的回弹仿真分析[J].机械工程学报,2013,49(22):84-90. 被引量:19
  • 9李建新,谢里阳,熊建辉.基于混合硬化模型的ERW焊管排辊成形数值模拟[J].塑性工程学报,2008,15(6):81-86. 被引量:1
  • 10GUSES E, SAYED T E. Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals[J]. International Journal of Solids and Structures, 2011, 48(10): 1610-1616.

二级参考文献58

  • 1许思广,曹起骧,连家创,姚开云,郭希学.环件轧制的热刚塑性耦合有限元分析[J].机械工程学报,1994,30(2):87-92. 被引量:9
  • 2李宏伟,杨合,郭玲,李兰云,郭良刚.混合硬化弹塑性本构关系及其在环件冷辗扩模拟中的应用[J].机械工程学报,2005,41(7):119-125. 被引量:9
  • 3康国政.循环硬化材料本构模型的隐式应力积分和有限元实现[J].计算力学学报,2005,22(5):579-584. 被引量:4
  • 4Zhi-Wu Han, Cai Liu, Wei-Ping Lu, Lu-Quan Ren. Experimental investigation and theoretical analysis of roll forming of electrical resistance welded pipes[J]. Journal of Materials Processing Technology. 2004. 145 : 311- 316
  • 5Hiroshi Ona. Cold roll forming for high tensile strength steel sheet proposition on forming of thin spring steel sheet pipe[J]. Journal of Materials Processing Technology. 2004. 153-154: 247-252
  • 6Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nano- structured materials from severe plastic deformation [J]. Prog Mater Sci, 2000,45 : 103.
  • 7Neishi K, Hotita Z, Longdon T G. Archieving superplasti- city in ulterfine-grained copper.. Influence of Zn and Zr addi- tions [J]. Mater Sci Eng,2003,A352(1-2):129.
  • 8Segal V M, Reznikovvi,Drobyshevskiyae, et al. Plastic wor- king of metals by simple shear [J]. Russian Metallurgy (English Translation), 1981 (1) : 99.
  • 9Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic defor- mation of alloys with submicron-grained structure[J]. Mater Sci Eng, 1991,A137(15) :35.
  • 10Valiev R Z, Korznikov A V, Mulyukov R R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J]. Mater Sci Eng,1993,A168(31):141.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部