期刊文献+

仿生多材料复合增强骨软骨支架的制造及性能研究 被引量:3

Fabrication and Performance Study of Biomimetic Multi-material Osteochondral Scaffold
下载PDF
导出
摘要 针对关节面上大面积骨软骨缺损修复过程中软骨形态恢复和力学环境恢复困难的问题,设计并制造一种新型聚乙二醇(Polyethylene glycol, PEG)/聚乳酸(Polylactide, PLA)/β-磷酸三钙(β-Tricalcium phosphate,β-TCP)仿生多材料复合增强骨软骨支架。基于CT扫描数据重建的羊膝关节模型上进行仿生多材料骨软骨支架的结构设计,包括多孔定制结构和固定桩及仿生结构;以光固化成形技术与真空灌注工艺相结合制造了的多材料复合增强骨软骨支架,确定灌注温度220℃,真空度–0.08~–0.10 Pa。形貌观测表明真空灌注法能使PLA完全充满整个次级管道,力学试验发现复合材料支架的压缩强度(21.25 MPa ±1.15 MPa)是单管道多孔生物陶瓷支架(9.76 MPa±0.64 MPa)的2.17倍, PLA固定桩的剪切强度(16.24 MPa±1.85 MPa)是陶瓷固定桩(0.87 MPa±0.14 MPa)的18.7倍。因此,复合PLA的骨软骨支架具有显著的力学增强和固定能力,有望为大面积骨软骨缺损的修复提供新的治疗手段。 Both Cartilage restoration and mechanical environment recovery are still difficult issues for repairing large osteochondral defect, an innovative biomimetic PEG (polyethylene glyco) / PLA (Polylactide) / β-TCP (β-Tricalcium phosphate) multi-material reinforced osteochondral scaffold is designed and fabricated. On the basis of the sheep knee model reconstructed by CT scan data, biomimetic multi-material osteochondral scaffold is structurally designed. It includes a porous structure and PLA anchor and biomimetic cartilage structure. Integration technology of 3D printing and vacuum perfusion is carried out to fabricate multi-material reinforced osteochondral scaffold under the condition of temperature 220 ℃, vacuum degree are–0.08 to–0.10 Pa. The scaffold morphology observations show that the PLA can completely fill the secondary pipe by vacuum perfusion method, mechanical tests found that the compressive strength of the composite scaffolds (21.25 MPa± 1.15 MPa) is 2.17 times than that of a single-pipe porous ceramic scaffold (9.76 MPa± 0.64 MPa) ;shear test results show that the shear strength of PLA anchor (16.24 MPa ± 1.85 MPa) is 18.7 times than that of ceramic anchor (0.87 MPa± 0.14 MPa). Therefore, mechanical strength and fixing performance of osteochondral scaffold has been significantly enhanced by perfusion of PLA, which provides a promising treatment for large osteochondral defects.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第21期133-139,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(51375371 51075320 51323007) 中央高校基本科研业务费专项资金资助项目
关键词 三维打印 仿生设计 骨软骨支架 聚乳酸 Β-磷酸三钙 3D Printing biomimetic design osteochondral scaffold polylactide β-tricalcium phosphate
  • 相关文献

参考文献19

  • 1SHAUN E, SUMAN D. Finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering[J]. Acta Biomaterialia, 2012, 8: 3138-3143.
  • 2EUN H, HAN M S. Shaped, stratified, scaffold-free grafts for articular cartilage defects[M]. New York: Springer, 2008.
  • 3BEST S M, POERTER A E, THIAN E S, et al. Bioceramics: Past, present and for the future[J]. J. Eur. Ceram. Soc., 2008, 28: 1319-1327.
  • 4REZWAN K, CHEN Q, BLAKER J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials,2006, 27: 3413-3431.
  • 5LAURAY, JUSTIN J A, BRADICA G, et al. Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering[DB/OL]. Wiley Online Library [2010-08-19]. http : //wileyonlinelibrary.com.
  • 6LI Xiang, LI Dichen, LU Bingheng, et al. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques[J]. J. Porous. Mater., 2008, 15. 667-671.
  • 7MARTINEZ-VAZQUEZ F J, PERERA F H, MIRANDA P, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration[J]. ActaBiomaterialia, 2010(6): 4361-4368.
  • 8李涤尘,贺健康,田小永,刘亚雄,张安峰,连芩,靳忠民,卢秉恒.增材制造:实现宏微结构一体化制造[J].机械工程学报,2013,49(6):129-135. 被引量:212
  • 9MARK P, STAIGER I K, NICHOLAS T, et al. Synthesis of topologically-ordered open-cell porous magnesium[J]. Materials Letters, 2010, 64: 2572-2574.
  • 10LI Xiang, BIAN Weiguo, LI Dichen, et al. Fabrication of porous beta-tricalcium phosphate with microchannel and customized geometry based on gel-casting and rapid prototyping[J]. Proceedings of the Institution of Mechanical Engineers, Part H, 2011, 225:315-323.

二级参考文献35

  • 1GEEVER L M,MíNGUEZ C M,DEVINE D M,etal.The synthesis,swelling behavior and rheologicalproperties of chemically crosslinked thermosensitivecopolymers based on N-isopropylacrylamide[J].Jour-nal of Materials Science,2007,42(12):4136-4148.
  • 2DEVINE D M,HIGGINBOTHAM C L.The synthe-sis of a physically crosslinked NVP based hydrogel[J].Polymer,2003,44(26):7851-7860.
  • 3PEPPAS N A,BURES P,LEOBANDUNG W,et al.Hydrogels in pharmaceutical formulations[J].Eur JPharm Biopharm,2000,50(1):27-46.
  • 4RAVICHANDRAN P,SHANTHA K L,RAO K P.Preparation,swelling characteristics and evaluation ofhydrogels for stomach specific drug delivery[J].Int JPharm,1997,154(1):89-94.
  • 5SUN Shaohua,CAO Hui,SU Haijia,et al.Prepara-tion and characterization of a novel injectable in situcross-linked hydrogel[J].Polymer Bulletin,2009,62(5):699-711.
  • 6ARCAUTE K,MANN B,WICKER R.Stereolithog-raphy of spatially controlled multi-material bioactivepoly(ethylene glycol)scaffolds[J].Acta Biomateria-lia,2010,6(3):1047-1054.
  • 7ARCAUTE K,MANN B K,WICKER R B.Stereo-lithography of three-dimensional bioactive poly(ethyl-ene glycol)constructs with encapsulated cells[J].Annals of Biomedical Engineering,2006,34(9):1429-1441.
  • 8DHARIWALA B,HUNT E,BOLAND T.Rapidprototyping of tissue-engineering constructs,usingphotopolymerizable hydrogels and stereolithography[J].Tissue Engineering,2004,10(9/10):1316-1322.
  • 9KIM G H,SON J G.3Dpolycarprolactone(pcl)scaf-fold with hierarchical structure fabricated by apiezoe-lectric transducer(pzt)-assisted bioplotter[J].ApplPhys:A Materials Science Processing,2009,94:781-785.
  • 10BOLAND T,TAO X,DAMON B J,et al.Drop-on-demand printing of cells and materials for designer tis-sue constructs[J].Materials Science&Engineering:C Biomimetic and Superamolecular Systems 2007,27:372-376.

共引文献254

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部