期刊文献+

高强度聚焦超声经颅治疗温度场的数值仿真研究 被引量:4

Research on Numerical Simulation of Temperature Distribution during Transcranial Tumor Therapy with High Intensity Focused Ultrasound
原文传递
导出
摘要 数值仿真是预测高强度聚焦超声(HIFU)温度场分布的有效方法之一。本研究参照人体头颅结构建立HIFU经颅骨治疗模型,采用Westervelt声波传播方程的近似式和Pennes生物热传导方程数值仿真HIFU经颅骨治疗的温度场分布,利用时间反转法对焦域位置进行调控和颅骨温度较高处的热点消除,进而分析讨论输入声强、辐照时间、换能器与颅骨相对距离对颅内形成焦域的影响。研究结果表明,时间反转法可实现HIFU经颅治疗形成焦域位置的调控和颅骨温度较高处的热点消除,热点消除后焦点温升无明显降低;利用热点消除法可在距离颅骨20mm的颅内浅表组织中形成60℃以上的焦域,形成的焦域体积随输入声强以及辐照时间的增加而非线性增加,声强越大,达到相同大小的焦域体积所需要的辐照时间越短,且换能器与颅骨之间的距离对颅内形成焦域体积的大小有影响。 Numerical simulation is one of the most significant methods to predict the temperature distribution in high- intensity focused ultrasound (HIFU) therapy. In this study, the adopted numerical simulation was used based on a transcranial ultrasound therapy model taking a human skull as a reference. The approximation of the Westervelt for- mula and the Pennes bio-heat conduction equation were applied to the simulation of the transcranial temperature dis- tribution. According to the temperature distribution and the Time Reversal theory, the position of the treatable focal region was corrected and the hot spot existing in the skull was eliminated. Furthermore, the influence of the expo- sure time, input power and the distance between transducer and skull on the temperature distribution was analyzed. The results showed that the position of the focal region could be corrected and the hot spot was eliminated using the Time Reversal theory without affecting the focus. The focal region above 60 ~C could be formed at the superficial tis- sue located from the skull of 20 mm using the hot spot elimination method and the volume of the focal region increa- ses with the exposure time and the input power in a nonlinear form. When the same volume of the focal region was obtained, the more power was inputted, the less the exposure time was needed. Moreover, the volume of the focal region was influenced by the distance between the transducer and the skull.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第6期1272-1277,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(81272495)
关键词 高强度聚焦超声 经颅治疗 温度场 high-intensity focused ultrasound transcranial therapy, temperature distribution
  • 相关文献

参考文献19

  • 1KENNEDYJ E. High-intensity focused ultrasound in the treatment of solid tumours[J]. Nat Rev Cancer. 2005. 5 (4) :321-327.
  • 2LI J L. LIU X Z. ZHANG D. et al. Influence of ribs on the nonlinear sound field of therapeutic ultrasound[J]. Ultrasound Med Bioi. 2007. 33(9): 1413-1420.
  • 3QIAN Z W. Issues in clinical applications of high intensity focused ultrasound (HIFU)[J]. Curr Med Imaging Rev. 2010. 6(3): 136-144.
  • 4SUN]. HYNYNEN K. Focusing of therapeutic ultrasound through a human skull: A numerical study[J].] Acoust Soc Am. 1998, 104(3 Pt 1): 1705-1715.
  • 5卞伟,支兴刚,王智彪,白晋,李发琪,谭启华,李崇雁.高强度聚焦超声作用下兔脑的病理转归[J].重庆医科大学学报,2006,31(4):494-497. 被引量:3
  • 6AUBRY] F. TANTER M, PER NOT M, et al. Experimental demonstration of noninvasive transskull adaptive focusing based On prior computed tomography scans[J].] Acoust Soc Am, 2003. 113(1): B4-93.
  • 7PER NOT M. AUBRY] F. TANTER M, et al. Prediction of the skull overheating during high intensity focused ultrasound transcranial brain therapy[C]// 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control loint 50th Anniversary Conference. 2004, 2: 1005-100B.
  • 8PINTON G. AUBRY 1 F. FINK M. et al. Effects of nonlinear ultrasound propagation on high intensity brain therapy[J]. Med Phys. 2011, 38(3) :1207-1216.
  • 9MCDANNOLD N. CLEMENT G, BLACK r. et al. Transcranial MRI-guided focused ultrasound surgery of brain tumors: Initial findings in three patients[J]. Neurosurgery, 2010, 66(2): 323-332.
  • 10菅喜岐,孙武军.凹球面八圆环相控阵高强度聚焦换能器:中国,CN201020682474.6[P].2011—09—14.

二级参考文献32

  • 1菅喜岐,森田长吉,史启铎,谭中.体外冲击波碎石焦点附近声压分布的时域有限差分法数值解析[J].生物物理学报,2006,22(1):62-66. 被引量:5
  • 2关利铭,王智彪,伍烽,白晋,杜永洪,文爽,曹友德.高强度聚焦超声对人乳腺癌细胞及其滋养血管损伤的病理观察[J].中国临床医学,2006,13(4):675-677. 被引量:13
  • 3Hubert P, David M, Apoutou N, Sabrina C, Yves C J, Michel R. High-intensity focused ultrasotmd ablation for the treatment of colorectal liver metastases during an open procedure: study on the pig. Annals of Surgery, 2009,249(1): 129-136.
  • 4Hynynen K, Watmough D J, Mallard JR. Design of ultrasonic transducers for local hyperthermia. Ultrasound Med Bio, 1981, 7(4):397-402.
  • 5Ebbini ES, Ibbini MS, Cain CA. An inverse method for hyperthermia phased-array pattern synthesis. IEEE Ultrasonics Symposium, 1988,2:947-950.
  • 6Ebbini ES, Cain CA. Multiple-focus ultrasound phased-array pattern synthesis: optimal driving-signal distributions for hyperthermia. 1EEE Tram Ultrason Ferroelectr Freq Control,1989,36(5):540-548.
  • 7Wang H, Ebbini ES, Cain CA. Effect of phase errors on field patterns generated by an ultrasound phased-array hyperthermia applicator. IEEE Trans Ultrason Ferroelectr Freq Control, 1990,38(2):521-531.
  • 8Damianou C, Hynynen K. The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery. J Acoust Soc Am, 1994,95(3):1641-1649.
  • 9Lu MZ, Wan MX, Xu F, Wang XD, Zhong H. Focused beam control for ultrasound surgery with spherical-section phased array: sound field calculation and genetic optimization algorithm. IEEE Tram Ultrason Ferroelect Freq Contr, 2005, 52(8):1270-1290.
  • 10Jian XQ, Morita N, Nakamura O, Okazaki K. Numerical simulation on nonlinear propagation of ultrasonic pulses in extracorporeal shock wave lithotripsy. Trans IEICE, 2002, J85-A(5):509-517.

共引文献13

同被引文献23

  • 1TER HAAR G. Acoustic surgery[J]. Phys. Today, 2001,54(12): 29–34.
  • 2SUN J, HYNYNEN K. Focusing of therapeutic ultrasoundthrough a human skull: A numerical study[J]. J. Acoust.Soc. Am., 1998, 104(3): 1705–1715.
  • 3CLEMENT G T, HYNYNEN K. A non-invasive methodfor focusing ultrasound through the human skull[J]. Phys.Med. Biol., 2002, 47(8): 1219–1236.
  • 4THOMAS J L, FINK M A. Ultrasonic beam focusingthrough tissue inhomogeneities with a time reversal mirror:application to transskull therapy[J]. IEEE Trans.Ultrason. Ferroelectr. Freq. Control, 1996, 43(6):1122–1129.
  • 5FINK M A, MONTALDO G, TANTER M. Time reversalacoustics in biomedical and engineering[J]. Annu. Rev.Biomed. Engrg., 2003, 5(1): 465–497.
  • 6KYRIAKOU A, NEUFELD E, WERNER B, et al. Areview of numerical and experimental compensation techniquesfor skull-induced phase aberrations in transcranialfocused ultrasound[J]. Int. J. Hyperther., 2013, 30(1):36–46.
  • 7AUBRY J F, TANTER M, PERNOT M, et al. Experimentaldemonstration of noninvasive transskull adaptivefocusing based on prior computed tomography scans[J]. J.Acoust. Soc. Am., 2003, 113(1): 84–93.
  • 8MARQUET F, PERNOT M, AUBRY J F, et al. Noninvasivetranscranial ultrasound therapy based on a 3DCT scan: Protocol validation and in vitro results[J]. Phys.Med. Biol., 2009, 54(9): 2597–2613.
  • 9LEDUC N, OKITA K, SUGIYAMA K, et al. Focus controlin HIFU therapy assisted by time-reversal simulationwith an iterative procedure for hot spot elimination[J]. J.Biomech. Sci. Eng., 2012, 7(1): 43–56.
  • 10巩建辉,严碧歌.高强度聚焦超声治疗中测温技术的研究[J].现代生物医学进展,2009,9(3):571-573. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部