期刊文献+

中国区域电离层TEC与月均值偏差的空间相关性研究 被引量:4

A study of spacial correlation of monthly mean deviation of ionospheric TEC over China
下载PDF
导出
摘要 本文利用美国喷气动力实验室(JPL)提供的电离层总电子含量(TEC)的地图网格产品,计算了中国区域上空电离层TEC与月均值偏差及其空间相关系数矩阵,从而分析了TEC与月均值偏差空间相关性的分布特征,根据统计学中定义的相关距离提取了这种偏差在经、纬度方向上的空间特征尺度.并以2008年和2011年为例,着重考察了TEC月偏差的空间特征尺度与太阳活动水平、地磁条件和季节变化之间的关系.结果发现,TEC与月均值偏差的空间相关性呈现椭圆形高斯分布的特征,沿纬线方向的特征尺度大于沿经线方向,不同纬度区域偏差的空间相关性特征差异明显,高纬的特征尺度在两个方向上均小于低纬,而不同经度区域在相同地方时条件下表现差异不大;两个方向的特征尺度在白天、太阳活动水平高和地磁活动剧烈时均存在增大的现象. Using the the ionospheric total electron content (TEC) map grid products provided by the Jet Propulsion Laboratory (JPL), we calculate the deviation of the TEC to the monthly- averaged TEC over China. Spatial correlation coefficient matrix of the deviation is also calculated to analyze its distribution characteristic. According to the definition of correlation distance in statistics, we extract the spatial characteristic scales in the zonal and meridian directions. Taking the example of 2008 and 2011, we further analyze the dependence of such spatial characteristic scales on the aolar activity level, geomagnetic conditions, and seasons. The results show that the spatial correlation approximately obeys the elliptic Gaussian distribution; the spatial characteristic scale in the zonal direction is larger than that in the meridian direction; the spatial correlationcharacteristics change significantly with the latitude~ the scales at high latitudes is smaller than those at low latitudes in both directions; the areas with the same local time but different longitudes have little differences;the characteristic scales in both directions tend to be larger when it′s in the daytime, of high solar activity level, and in high intense magnetic activity.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2014年第11期3600-3610,共11页 Chinese Journal of Geophysics
基金 国家自然科学基金(D041002电离层资料同化中的背景场误差特征分析研究)资助
关键词 电离层 TEC 背景场 空间变化 特征尺度 Ionosphere TEC Ambient field Space variation Characteristic scale
  • 相关文献

参考文献5

二级参考文献69

  • 1张步涵,刘小华,万建平,刘沛,程时杰.基于混沌时间序列的负荷预测及其关键问题分析[J].电网技术,2004,28(13):32-35. 被引量:46
  • 2郑华,谢莉,张粒子,程瑜,申景娜.系统边际价格概率分布的实证分析[J].中国电机工程学报,2006,26(3):43-47. 被引量:13
  • 3王绵斌,谭忠富,李雪,李亚青,侯建朝,关勇.供电公司实行峰谷分时电价的风险价值计算模型[J].电网技术,2007,31(9):43-47. 被引量:15
  • 4Niimura T. Forecasting techniques for deregulated electricity market prices[C]. Power Engineering Society General Meeting, Montreal, 2006.
  • 5Gonzalez A M, Roque A M S, Garcia-Gonzalez J. Modeling and forecasting electricity prices with input/output hidden Markov models [J]. IEEE Trans on Power Systems, 2005, 20(1): 13-24.
  • 6Zareipour H, Canizares C A, Bhattacharya K, et al. Application of public-domain market information to forecast Ontario's wholesale electricity prices[J]. IEEE Trans on Power Systems, 2006, 21(4): 1707-1717.
  • 7Contreras J, Espinola R, Nogales F J, et al. ARIMA models to predict next-day electricity prices[J]. IEEE Trans on Power Systems, 2003, 18(3): 1014-1020.
  • 8Conejo A J, Plazas M A, Espinola R, et al. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models[J]. IEEE Trans on Power Systems, 2005, 20(2): 1035-1042.
  • 9Conejo A J, Contreras J, Espinola R, et al. Forecasting electricity prices for a day-ahead pool-based electric energy market [J]. International Journal of Forecasting, 2005, 21(3): 435-462.
  • 10Garcia M P, Kirschen D S. Forecasting system imbalance volumes in competitive electricity markets[J]. IEEE Trans on Power Systems, 2006, 21(1): 240-248.

共引文献54

同被引文献69

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部