摘要
设R′是一个环,M_(n′)(R′)是R′上的n′×n′矩阵环.如果环R有不变基数性质并且每个有限生成的投射左R-模是自由模,则R是一个投射自由环.如果环R≌M_r(S),其中S是一个投射自由环,则R是一个投射可迁环.当R是一个投射可迁环时,给出了从M_(n′)(R′)到M_n(R)(n′≥n≥2)的若当同态的代数公式.
Let R’ be a ring and Mn’(R’) the n’ × n’ matrix ring over R’.A ring R is a projective-free ring if it has the invariant basis number property and every finitely generated projective left R-module is free.A ring R is a projectivetrivial ring if there is a projective-free ring S such that R(?)Mr(S).When R is a projective-trivial ring,the algebraic formulas of Jordan homomorphisms from Mn’(R’) to Mn(R)(n’ ≥n≥ 2) are given.
出处
《应用数学与计算数学学报》
2014年第4期416-423,共8页
Communication on Applied Mathematics and Computation
基金
Progect supported by the National Natural Science Foundation of China(11371072)
关键词
若当同态
投射自由环
投射可迁环
矩阵环
环同态
Jordan homomorphism
projective-free ring
projective-trivial ring
matrix ring
ring homomorphism