期刊文献+

一个矩阵函数及其应用(英文)

A matrix function with applications
下载PDF
导出
摘要 给出了矩阵函数f(X)=A-BX-(BX)*的秩和最小惯性指数定理,其中*表示矩阵的共轭转置.作为应用,给出了Lyapunov矩阵方程以及矩阵不等式BX+(BX)*≥A和BX+(BX)*≤A可解的若干充要条件. In this paper,we give a rank and inertia minimization theorem on a matrix function f(X) = A- BX-(BX)*,where * means the transpose and conjugate of a matrix.As applications,we give some necessary and sufficient conditions for the Lyapunov matrix equation and matrix inequalities BX +(BX)* ≥ A and BX +(BX)* ≤ A to be solvable.
作者 王子文
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2014年第4期449-453,共5页 Communication on Applied Mathematics and Computation
关键词 LYAPUNOV矩阵方程 矩阵方程 惯性指数 Lyapunov matrix equation matrix equation rank inertia
  • 相关文献

参考文献7

  • 1Piao F X, Zhang Q L, Wang Z F. The solution to matrix equation AX-\-XTC - B [J]. Journalof the Franklin Institute, 2007, 344: 1056-1062.
  • 2Sorensen D C, Antoulas A C. The Sylvester equation and approximate balanced reduction [J].Linear Algebra Appl, 2002(351/352): 671-700.
  • 3Braden H W. The equation ATX 土二 B [J]. SIAM J Matrix Anal Appl, 1998,20:295-302.
  • 4Djordjevic D S. Explicit solution of the operator equation A*X ± X*A = B[J].J ComputAppl Math, 2007,200: 701-704.
  • 5Cohen N, Dancis J. Inertias of block band matrix completions [J]. SIAM J Matrix Anal Appl,1998, 19: 583-612.
  • 6Chu D L, Hung Y S, Woerdeman H J. Inertia and rank characterizations of some matrixexpressions [J]. SIAM J Matrix Anal Ajrpl, 2009, 31: 1187-1226.
  • 7Lin M H, Wimmer H K. The generalized Sylvester matrix equation,rank minimization andRoth's equivalence theorem [J]. Bull Aust Math Soc, 2011, 84: 441-443.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部