期刊文献+

求解结构矩阵低秩逼近的交替投影方法

Alternating projection method for solving structured low rank approximation
下载PDF
导出
摘要 结构矩阵低秩逼近在图像压缩、计算机代数和语音编码中有广泛应用.首先给出了几类结构矩阵的投影公式,再利用交替投影方法计算结构矩阵低秩逼近问题.数值试验表明新方法是可行的. Structured low rank approximation has a wide range of applications in image compression,computer algebra,and speech encoding.We first present projection formulas of several kinds of structured matrices and then apply alternating projection algorithm to obtain the solution of structured low rank approximation of a matrix.Finally,the computational results show that the new method is feasible.
出处 《应用数学与计算数学学报》 2014年第4期475-485,共11页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11101100 11261014 11301107) 广西自然科学基金资助项目(2012GXNSFBA053006 2013GXNSFBA019009 2011GXNSFA018138) 广西信息科学实验中心基金资助项目(20130103)
关键词 结构矩阵 低秩逼近 交替投影方法 structured matrix low rank approximation alternating projection algorithm
  • 相关文献

参考文献20

  • 1Bauschke H H, Borwein J M. Dykstras alternating projection algorithm for two sets [J]. JApprox Theory, 1994, 79: 418-443.
  • 2DeMoor B. Total least squares for affine structured matrices and the noisy realization problem[J]. IEEE Trans Signal Process, 1994, 42: 3104-3113.
  • 3Corless R M, Gianni P M, Trager B M, Watt S M. The singular value decomposition for poly-nomial system [C] //Proc Int Symp Symbolic and Algebraic Computation. New York: ACM,1995.
  • 4Gower J C. Euclidean distance geometry [J]. Appl Math Comput, 1982, 7: 1-14.
  • 5Rosen J B, Park H, Click J. Total least norm problem: formulation and algorithms [J]. SIAMJ Matrix Anal Appl, 1996, 17: 110-126.
  • 6Khare S R, Pillai H K, Belur M N. Numerical algorithm for structured low rank approxima-tion problem [C]//Proceeding of the 19th International Symposium on Mathematical Theory ofNetworks and Systems. Budapest: World Academic Press, 2010.
  • 7Cadzow J A. Signal enhancement: a composite property mapping algorithm [J]. IEEE TransAcoust Speech Signal Process, 1988, 36: 49-62.
  • 8Cybenko G. A general orthogonalization technique with applications to time series analysisand signal processing [J]. J Comp Math, 1983, 40: 323-336.
  • 9Frieze A, Kannaa R, Vempala S. Fast Monte-Carlo algorithms for finding low rank approxi-mations [C]//Proc 39th FOCS. Palo Alto, CA: IEEE, 1998: 378-390.
  • 10De Beer R. Quantitative in vivo NMR (Nuclear Magnetic Resonance on Living Objects) [M].The Netherlands: Delft University of Technology, 1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部