期刊文献+

滚动轴承特征提取的多分量解调方法

Multicomponent Demodulation Method for Rolling Bearing Fault Feature Extraction
下载PDF
导出
摘要 提出利用多个高频振动分量进行滚动轴承故障特征提取的多分量解调方法。与传统的基于单一高频振动分量的解调方法不同,多分量解调方法从多个高频振动分量中提取信号特征信息。首先构建带通滤波器组对原信号进行滤波,然后依据所提高频振动分量获取策略求取原信号中多个高频振动分量,并对各高频振动分量进行包络检波,其次用独立成分分析对所得包络信号进行盲分离,最后对分离信号进行频谱变换以提取故障特征信息。仿真信号和故障轴承信号的分析结果表明,所提方法较传统解调方法更能凸显滚动轴承故障振动信号中的特征信息。 A new method based on multiple resonance components, named multicomponent demodulation method, is proposed for rolling bearing fault feature extraction. Different from the traditional demodulation method based on single resonance component, the proposed method extracts the fault features from multiple resonance components. Firstly, the designed band- pass filters are used to filter the original signal. Secondly, multiple resonance components are selected out by the proposed resonance component selection strategy, and each selected resonance component is demodulated by envelope detection. Thirdly, the independent component analysis is used to achieve the separation of the envelope signal. Fourthly, spectrum analysis is carried out to the separated signal to get the characteristic defect frequeney. The analysis results of the simulated signal and rolling bearing vibration signal with an inner race fault show that the proposed method is better able to extract the rolling bearing fault feature than traditional demodulation method.
出处 《机械设计与制造》 北大核心 2014年第12期141-144,共4页 Machinery Design & Manufacture
基金 国家自然科学基金(51175533)
关键词 多分量解调 小波滤波 滚动轴承 特征提取 Multicomponent Demodulation Wavelet Filtering Rolling Bearing Feature Extraction
  • 相关文献

参考文献10

  • 1Feng Zhi-peng,Liang Ming,Chu Fu-lei.Recent advances in time–frequency analysis methods for machinery fault diagnosis:a review with application examples[J].Mechanical Systems and Signal Processing,2013,38(1):165-205.
  • 2Liu Jie.Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection[J].Measurement Science and Technology,2012(23):1-11.
  • 3李志农,刘卫兵,肖尧先,邬冠华.基于局域均值分解包络谱和SVM的滚动轴承故障诊断方法研究[J].机械设计与制造,2011(11):170-172. 被引量:20
  • 4乔保栋,陈果,曲秀秀.基于Hilbert-Huang变换和盲源分离的滚动轴承耦合故障诊断方法[J].飞机设计,2011,31(3):37-43. 被引量:1
  • 5Peter W.Tse,Wang Dong.The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection[J].Mechanical Systems and Signal Processing,2013,40(2):520-544.
  • 6蒋永华,汤宝平,刘文艺,董绍江.基于参数优化Morlet小波变换的故障特征提取方法[J].仪器仪表学报,2010,31(1):56-60. 被引量:35
  • 7Jér me Antoni,R.B.Randall.The spectral kurtosis:application to the vibratory surveillance and diagnostics of rotating machines[J].Mechanical Systems and Signal Processing,2006,20(2):308-331.
  • 8I.Soltani Bozchalooi,Liang Ming.A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals[J].Mechanical Systems and Signal Processing,2008(22):915-933.
  • 9杜炜,陈卫,程礼,赵传洪.小波包能量熵的高压转子装配性能特征的提取方法研究[J].机械设计与制造,2013(10):110-113. 被引量:1
  • 10Yang Wen-xian.A natural way for improving the accuracy of the continuous wavelet transforms[J].Journal of Sound and Vibration,2007(306):928-939.

二级参考文献36

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部