期刊文献+

Shearlet多方向自适应加权融合的稀疏表征人脸识别 被引量:2

Face Recognition Based on Shearlet Multi-orientation Adaptive Weighted Fusion and Sparse Representation
下载PDF
导出
摘要 针对传统稀疏表征分类器只有在训练样本足够多时才会对特征变化不敏感的缺点,提出一种Shearlet多方向自适应加权融合的稀疏表征人脸识别算法。为了提取局部方向信息并降低特征维数,首先利用Shearlet变换对图像进行多尺度、多方向分解,获得子带系数矩阵,然后根据子带系数矩阵方差的大小对同一尺度的方向子图按主方向排序,利用子带系数矩阵的能量和均值特征对排序后的人脸子图进行加权融合,最后为了使得表征系数矢量具有更为显著的稀疏性,进一步利用融合特征构造字典。在ORL、FERET和YALE人脸库中做了多组实验,结果表明,该方法能增强对外界环境变化的鲁棒性,同时可以提高人脸的识别率。 For the reason of the traditional sparse representation classifier is not sensitive to the changes of characteristics only has enough training samples, a face recognition method based on Shearlet multi-orientation adaptive weighted fusion and sparse representation is proposed. In order to extract the multi-orientation information and reduce the dimension of the features, images are decomposed in multi-scale and multi-direction by using Shearlet, and the subband coefficient matrices are obtained. Then, the directional sub charts on the same scale are sorted in the main direction according to the sizes of the variances of the subband coefficient matrices. Furthermore, using the energy and the mean values of subband coefficient matrices, the face sub charts are weighted fused. Finally, Shearlet multi-orientation feature fusion is applied to construct sparse representation classifiers for sparse representation of coefficient vectors. The experiments taken under the ORL, FERET, and YALE database are used to verify the effectiveness of the proposed method, and the results show that the proposed method can effectively enhance the robustness of the external environment changes and improve the recognition rate.
出处 《光电工程》 CAS CSCD 北大核心 2014年第12期66-71,共6页 Opto-Electronic Engineering
基金 国家自然科学基金(60574051) 江苏省产学研联合创新资金-前瞻性联合研究项目(BY2012067)
关键词 SHEARLET变换 稀疏表征 多方向 加权融合 Shearlet transform sparse representation multi-orientation weighted fusion
  • 相关文献

参考文献15

  • 1LIU Weilong, LI Shutao. Sparse representation with morphologic regularizations for single image super-resolution [J]. Signal Processing(SO165-1684), 2014, 98: 410-422.
  • 2Wright J, Yang A, Ganesh A, et al. Robust Face Recognition via Sparse Representation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828), 2009, 31(2): 210-227.
  • 3HUANG Hong, FENG Hailiang, PENG Chengyu. Complete local Fisher discriminant analysis with Laplacian score ranking for face recognition [J]. Neurocomputing(S0925-2312), 2012, 89: 64-77.
  • 4Bajwa U I, Taj I A, Bhatti Z E. A comprehensive comparative performance analysis of Laplacianfaces and Eigenfaces for face recognition [J]. The Imaging Science Journal(S1368-2199), 2011, 59(1): 32-40.
  • 5HUANG Hong, LIU Jiamin, FENG Hailiang. Uncorrelated local Fisher discriminant analysis for face recognition [J]. International Journal of Pattern Recognition and Artifieial Intelligence(S0218-0014), 2011, 25(06): 863-887.
  • 6Kang J W, Gabbouj M, Kuo C C J. Sparse/DCT (S/DCT) Two-Layered Representation of Prediction Residuals for Video Coding [J]. IEEE Transaction on Image Processing(S1057-7149), 2013, 22(7): 2711-2722.
  • 7WANG Xiaolong, ZHU Qi, CUI Jinlong, et al. Sparse representation method based on Gabor and CLBP [J]. Optik-International Journal for Light and Electron Optics(S0030-4026), 2013, 124(22): 5843-5850.
  • 8Guo K, Labate D. Optimally sparse multidimensional representation using Shearlets [J]. SIAM J Math Anal(S0036-1410), 2007, 39: 298-318.
  • 9Easley G, Lim W, Labate D. Sparse directional image representations using the discrete Shearlet transform [J]. Appl. Harmon Anal(S1063-5203), 2008, 25: 25-46.
  • 10YIN Jun, LIU Zhonghua, JIN Zhong, et al. Kemel sparse representation based classification [J]. Neurocomputing (S0925-2312), 2012, 77(1): 120-128.

二级参考文献12

  • 1Phillips P, Flynn P, Scruggs T, et al. Overview of the face recognition grand challenge [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20-25, 2005, 1: 947-954.
  • 2GAO Xinbo, LU Wen, TAO Dacheng, et al. Image Quality Assessment Based on Multiscale Geometric Analysis [J]. IEEE Transaction onImage Processing(S1057-7149), 2009, 18(7): 807-815.
  • 3Woiselle A, Starck J L, Fadili J. 3-D Data Denoising and Inpainting with the Low-Redundancy Fast Curvelet Transform [J]. Journal of Mathematical Imaging andVision(S0924-9907), 2011, 39(2): 121-139.
  • 4YANG Shuyuan, WANG Min, JIAO Licheng, et al. Image fusion based on a new contourlet packet [J]. Information Fusion(S1566-2535), 2010, 11(2): 78-84.
  • 5Guo K, Labate D. Optimally sparse multidimensional representation using Shearlets [J]. SIAM Journal on Mathematical Analysis(S0036-1410), 2007, 39: 298-318.
  • 6Toet A, Hogervorst M A, Nikolov S G, et al. Towards cognitive image fusion [J]. Information Fusion(S 1566-2535), 2010, 11(2): 95-113.
  • 7Guo K, Labate D, Lim W Q. Edge analysis and identification using the continuous shearlet transform [J]. Applied and Computational Harmonic Analysis(S1063-5203), 2009, 27(1): 24-26.
  • 8ZHANG Yan, YU Bin, GU Haimin. Face Recognition Using Curvelet-Based Two-Dimensional Principle Component Analysis [J]. International Journal of Pattern Recognition and Artificial Intelligence(S0218-0014), 2012, 26(3): 1-13.
  • 9XIA Wei, YIN Shouyi, OUYANG Peng. A High Precision Feature Based on LBP and Gabor Theory for Face Recognition [J]. Sensors(S1424-8220), 2013, 13(4): 4499-4513.
  • 10CHENG Yong, HOU Yingkun, ZHAO Chunxia, et aL Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain [J]. Neurocomputing(S0925-2312), 2010, 73(10): 2217-2224.

共引文献8

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部