期刊文献+

一个随机利率下的夫妻综合保险模型 被引量:2

Aggregate life insurance model for couples under random interest rates
下载PDF
导出
摘要 针对随机利率下的联合寿险精算问题,建立了一个包括夫妻终身增额寿险,延期支付夫妻增额养老金和储蓄还本部分等综合的联合保险精算模型.考虑到承保人对保费收入的实际投资状况,将利率的连续扩散部分采用了反射布朗运动建模.并在考虑到突发事件会对利率产生的影响,将利率的离散跳跃部分运用了泊松过程建模.给出了均衡净保费的一般表达式和在假设死亡均匀分布条件下均衡纯保费的简洁计算公式.并且通过数值例子说明了模型的正确性与有效性.由于采用半连续式寿险模型计算均衡纯保费,更加符合保险实务的要求,具有较强的实用性与可操作性,有更为广泛的使用范围. For the combined life insurance issue under stochastic interest rate ,this paper establishes an aggregate life insurance model ,which includes increasing insurance for couple’s life ,increasing pension for couple of deferred payment and repaid principal parts etc .With the influence of the actual investment of premiums ,continuous diffusion section of the random interest rate is decided by reflec‐ted Brow nian motion .Considering the influence of the outburst cases on interest rate ,discrete jump‐ing section of the interest rate is decided by Poisson process .It obtains the formulas of annual level premium ,and the concise expressions of the formula are given in the case that death happens uni‐formly in every policy year .Finally ,the accuracy and validity of the model are verified by numerical examples .The semi‐continuous life insurance model has a wide application and is more suitable to the requirement of insurance practice .
出处 《辽宁师范大学学报(自然科学版)》 CAS 2014年第4期461-468,共8页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金项目(71072161)
关键词 随机利率 年金 寿险 精算现值 stochastic rate of interest increasing annuity increasing life insurance actuarial present value
  • 相关文献

参考文献18

  • 1伍超标.博士后研究_T作报告《概率统计的若干应用问题》之4.4[R].上海:华东师范大学,1995:84-92.
  • 2BEEKMAN J A,FUELLING C P. Interest and mortality randomness in some annuities[J]. Insurance: Mathematics and Econom- ics, 1990,9:185-196.
  • 3BEEKMAN J A,FUELLING C P. Extra randomness in certain annuity models[J]. Insurance: Mathematics and Economies, 1991, 10:275-287.
  • 4BEEKMAN J A,FUELLING C P. One approach to dual randomness in life insurance[J]. Scand Actuar J, 1993,2:173-182.
  • 5DE SCHEPPER,DE VYLDER A,GOOVAERTS A M, et al. Interest randomness in annuities certain[J]. Insurance: Mathematics and Economics, 1992,11 : 271-281.
  • 6DE SCHEPPER,GOOVAERTS A M. Some further results on annuities certain with random interest[J]. Insurance: Mathematics and Economics, 1992,11 : 283-290.
  • 7DE SCHEPPER,GOOVAERTS A M, DELBAEN F. The laplace transform of annuities certain with exponential time distribution [J]. Insurance : Mathematics and Economics, 1992,11 : 291-294.
  • 8VANNESTE M,GOOVAERTS A M,DE SCHEPPER, et al. A straightforward analytical calculation of distribution of an annuity certain with stochastic interest rate[J]. INSURANCE: Mathematics and Economics, 1997,20 : 35-41.
  • 9刘凌云,汪荣明.一类随机利率下的增额寿险模型[J].应用概率统计,2001,17(3):283-290. 被引量:43
  • 10PERRY David, STADJE Wolfgang. Function space integration for annuities[J]. Insurance:Mathematics and Economics, 2001,29: 73-82.

二级参考文献20

  • 1王丽燕,冯恩民.一种家庭联合保险的双随机模型[J].工程数学学报,2003,20(8):69-72. 被引量:11
  • 2何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 3WANG Jing-xin, WANG Ren-Hong. Spline interpolation from Random Data[J]. Journal of IntroductionS-Computational Science, 2004,1 : 121-125.
  • 4BHARUCHA-REID A T. Random Polynomails[M]. Orlando,Florida: Academic Press Inc,1986.
  • 5[2]凯利森 S G.利息理论[M].上海:上海科学技术出版社,1998.
  • 6邹焱 许谨良 赵学林.夫妻联合两全养老金保险.经济数学,1992,:93-97.
  • 7邹焱,经济数学,9卷,1期,93页
  • 8王仁宏.数值逼近[M].北京:高等教育出版社,2003.
  • 9伍超标.博士后研究报告《概率统计的若干应用问题》之4.4[R].上海:华东师范大学,1995:84-92.
  • 10BEEKMAN J A, FUELLING C P. Interest and mortality randomness in some annuities [J]. Insurance: Math and Econ, 1990, 9:185-196.

共引文献68

同被引文献14

  • 1王丽燕,冯恩民.一种家庭联合保险的双随机模型[J].工程数学学报,2003,20(8):69-72. 被引量:11
  • 2杨静平,吴岚.关于n年期寿险的极限分布(英文)[J].北京大学学报(自然科学版),1997,33(5):561-566. 被引量:1
  • 3Pollard J H.On fluctuating interest rates[J].Bulletin de 1’Association des Actuaries Belges,1971,66:68-97.
  • 4Dhaene J.Stochastic interest rates and auto regressive integrated moving average processes[J].ASTIN Bulletin,1989,19(1):131-138.
  • 5Gary Parker.Moments of the present value of the future of a portfolio of policies[J].Scandinavia Actuarial Journal,1994,1:53-67.
  • 6Beekman J A,Fuelling C P.Extra randomness in some annuities in certain annuity models and mortality randomness in some annuities[J].Insurance:Mathematics and Economics,1991,10:275-287.
  • 7Beekman J A,Fuelling C P.One approach to dual randomness in life insurance[J].Scandinavian Actuarial Journal,1993,76(2):173-182.
  • 8Pesand,Skinner.Duration for bonds with default risk[J].Journal of Banking and Finance,1974,21(4):1-16.
  • 9Hoedemakers T,Beirlant J,Goovaerts M J,et al.On the distribution of discounted loss reserves using generalized linear models[J].Scand Actuarial Journal,2005(1):25-45.
  • 10Gary Parker.Limiting distribution of the present value of a portfolio[J].ASTIN Bulletin,1994,24(1):47-60.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部