期刊文献+

基于混合优化算法的云计算资源调度 被引量:2

Research on Cloud Computing Resource Scheduling Based on Hybrid Optimization Algorithm
下载PDF
导出
摘要 由于云计算的动态性、异构性和不可预测性等特点,使得资源调度策略面临很大的挑战。目前解决资源调度的方法主要是一些启发式算法,如模拟退火算法、人工神经网络算法、粒子群算法、蚁群算法和遗传算法等,由于优缺点分明,不能单独实现云计算任务的最优分配。因此,提出了使用混合优化算法解决云计算资源分配问题。在算法前期,借助粒子群全局广泛搜索能力,快速寻找到较优解;在算法后期,借助蚁群算法的正反馈性和高效性,寻找最优解。实验表明该算法有较短的任务执行时间和实现各个物理主机间的负载均衡。 It makes resource scheduling policy a big challenge because of the dynamic nature of cloud computing, heterogeneous and unpredictable characteristics. The present solution are heuristic algorithms,such as simulated annealing, artificial neural network algorithm, particle swarm optimization, ant colony optimization, genetic algorithm and so on; It cannot be achieved optimal allocation of cloud computing tasks separately due to all these methods have its advantages and disadvantages. So this study try to fix the problem of resource scheduling of cloud computing using Hybrid optimization algorithm. In the early stage of algorithm, using a wide range global search capability of Particle Swarm Optimization to find the optimum solution quickly; In the late stage, with positive and efficiency of feedback Ant Colony Algorithm, the optimal solution is found. Experimental results show that task execution time of the algorithm is shorter and make load balancing for each physical host.
作者 任小金 郭培
出处 《电脑开发与应用》 2014年第11期1-6,共6页 Computer Development & Applications
基金 2012年度国家自然科学基金(61272544) 河南省教育厅科学技术研究重点资助项目(12A520010)
关键词 启发式算法 资源调度 搜索能力 正反馈性 heuristic algorithm resource scheduling search capability positive feedback
  • 相关文献

参考文献6

二级参考文献72

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 3亓旭光,梁正友.基于蚁群算法的网格资源分配与调度研究[J].广西民族学院学报(自然科学版),2006,12(2):83-86. 被引量:5
  • 4陈烨.变尺度混沌蚁群优化算法[J].计算机工程与应用,2007,43(3):68-70. 被引量:22
  • 5Foster I, Kesselman C. The Grid-Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers, 1998.
  • 6Abraham A, Buyya R, Nath B. Nature' s heuristics for scheduling jobs on computational grids. In The 8th IEEE International Conference on Advanced Computing and Communications India,2000.
  • 7Braun T,Siegel H,Beek N. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing, 2001,61 (6) :810 -837.
  • 8Carretero J, Xhafa F. Using genetic algorithms for scheduling jobs in large scale grid applications. In Workshop of the European Chapter on Metaheuristics EUME 2005, Metaheuristics and Large Scale Optimization. Vilnius, Lithuania,2005 (5) : 19 - 21.
  • 9T Stutzle, M Dorigo. A short convergence proof for a class of ant colony optimization algorithms [ J ]. IEEE Transactions on Evolutionary Computation,2002,6(4) :358 -365.
  • 10L M Gambardella, M Dorigo. Solving symmet tic and asymmet2ric TSPs by ant colonies [ C ]. In:Proceedings of the IEEE Conference on Evolutionary Computation, ICEC' 96, IEEE Press, NewYork, 1996. 622 - 627.

共引文献86

同被引文献18

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部