期刊文献+

一种解决组合爆炸问题的三态故障贝叶斯网络 被引量:5

A Three-State Faulty Bayesian Network for Solving Combinational Explosion Problem
下载PDF
导出
摘要 针对传统故障贝叶斯网络在可靠性分析以及故障诊断领域存在的组合爆炸问题,提出了一种三态故障贝叶斯网络建模方法。通过将传统的失效分为"物理故障"和"正常却不工作"2种模式,提出将串联系统中元件以及"或"门下的事件转换为包含正常状态以及上述2种失效模式的三态节点,取代仅有正常和失效2种状态的传统模型节点。在此基础上深入分析了构建三态故障贝叶斯网络模型的方法。最后建立了某型飞机左侧交流电源系统的三态故障贝叶斯网络并进行了深入分析。理论和实例分析均表明,建立的三态故障贝叶斯网络在减少模型参数的同时可有效避免"或"门引起的组合爆炸问题,为串联系统和"或"门占优的系统提供了一种新的故障贝叶斯网络建模手段。 Aiming at the combinational explosion problem of faulty Bayesian network in the field of reliability analy-sis and fault diagnosis, we propose a method of building a three-state faulty Bayesian network.By dividing tradition-al failure into the two modes of “physical failure” and “normal without working”, we propose three-state nodes converted from the events of OR gates and the components of the series system, thus replacing the two-state nodes of traditional models that just contain the modes of normal and failure.On the basis of that, we study in depth a method for building a three-state faulty Bayesian network.Finally a three-state Bayesian network representing the left AC power system of a certain aircraft is built and analyzed in depth.Both the analysis of the theory and the case show preliminarily that the three-state faulty Bayesian network proposed by us reduces the number of parameters while avoiding the combinational explosion problem caused by OR gates; this can be a new modeling means of building faulty Bayesian networks for OR gates-dominant systems and series systems.
作者 王瑶 孙秦
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第6期857-864,共8页 Journal of Northwestern Polytechnical University
基金 工信部十二五质量与可靠性技术基础项目(2052013B003)资助
关键词 飞机 贝叶斯网络 失效分析 失效模式 组合爆炸 aircraft Bayesian networks failure analysis failure modes reliability analysis combinational explosion
  • 相关文献

参考文献11

  • 1尹晓伟,钱文学,谢里阳.系统可靠性的贝叶斯网络评估方法[J].航空学报,2008,29(6):1482-1489. 被引量:67
  • 2Langseth H, Portinale L. Bayesian Networks in Reliability[ J]. Reliability Engineering & System Safety, 2007, 92( 1 ) : 92-108.
  • 3Schellhorn G, Thums A, Reif W. Formal Fault Tree Semantics[ C ]//Proceedings of The Sixth World Conference on Integrated Design & Process Technology, Pasadena, CA, 2002.
  • 4Khakzad N, Khan F, Amyotte P. Safety Analysis in Process Facilities : Comparison of Fault Tree and Bayesian Network Approa- ches[J]. Reliability Engineering & System Safety, 2011, 96(8): 925-932.
  • 5尹晓伟,钱文学,谢里阳.贝叶斯网络在机械系统可靠性评估中的应用[J].东北大学学报(自然科学版),2008,29(4):557-560. 被引量:33
  • 6王广彦,马志军,胡起伟.基于贝叶斯网络的故障树分析[J].系统工程理论与实践,2004,24(6):78-83. 被引量:98
  • 7Bobbio A, Portinale L, Minichino M, et al. Improving the Analysis of Dependable Systems by Mapping Fault Trees into Bayes- ian Networks [ J]. Reliability Engineering & System Safety, 2001, 71 (3) : 249-260.
  • 8Portinale L, Bobbio A. Bayesian Networks for Dependability Analysis : an Application to Digital Control Reliability [ C ]//Pro- ceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc, 1999:551-558.
  • 9杨昌昊,胡小建,竺长安.从故障树到故障贝叶斯网映射的故障诊断方法[J].仪器仪表学报,2009,30(7):1481-1486. 被引量:41
  • 10Weidl G, Madsen A L, Israelson S. Applications of Object-Oriented Bayesian Networks for Condition Monitoring, Root Cause A- nalysis and Decision Support on Operation of Complex Continuous Processes [ J]. Computers & Chemical Engineering, 2005, 29 (9) ~ 1996-2009.

二级参考文献31

  • 1袁朝辉,崔华阳,侯晨光.民用飞机电液舵机故障树分析[J].机床与液压,2006,34(11):221-223. 被引量:9
  • 2霍利民,朱永利,张在玲,陈丽.贝叶斯网络在配电系统可靠性评估中的应用[J].电工技术学报,2004,19(8):113-118. 被引量:32
  • 3苑春苗,陈宝智,李畅.基于感知机的故障树最小割集算法[J].中国安全科学学报,2006,16(5):141-144. 被引量:4
  • 4David C Y,Thanh C N,Peter H. Bayesian network model for reliability assessment of power systems [J]. IEEE Trans on Power Systems, 1999,14(2):426-432.
  • 5Billioton R, Allan R N. Reliability evaluation of power systems[M]. New York:Plenum, 1984.
  • 6Weidl A l, Madsen S I. Applications of object oriented Bayesian networks for condition monitoring root cause analysis and decision support on operation of complex continuous processes[J]. Computers and Chemical Engineering, 2005, 29:1996-2009.
  • 7Sankaran M,Ramesh R. Validation of reliability computational models using Bayes networks[J]. Reliability Engineering and System Safety, 2005, 87(2): 223-232.
  • 8Boudali H, Dugan J B. A discrete-time Bayesian network reliability modeling and analysis framework[J]. Reliability Engineering and System Safety, 2005,87(3):337-349.
  • 9Bobbio A, Portinale L, Minichino M, et al. Improving the analysis of dependable Systems by mapping fault trees into Bayesian networks [ J]. Reliability Engineering System Safety, 2001, 71:249-260.
  • 10Helge L, Luigi P. Bayesian networks in reliability[J]. Reliability Engineering System Safety, 2006,92 (1) : 92-108.

共引文献215

同被引文献47

  • 1张涛,郭波,谭跃进,刘芳.一种基于BDD的多阶段任务系统可靠度新算法[J].系统工程与电子技术,2005,27(3):446-448. 被引量:10
  • 2费胜巍,孙宇,师会超.基于故障分析模型的贝叶斯网络构建及应用[J].计算机集成制造系统,2007,13(9):1768-1773. 被引量:9
  • 3Nandi S, Toliyat H A, Li X. Condition monitoring and fault diagnosis of electrical motors-a review [J].IEEE Transactions on Energy Conversion, 2005, 20 (4) : 719- 729.
  • 4Stephenson T A. An introduction to Bayesian network the ory and usage[P], IDIAP-RR 00-03, 2000.
  • 5Niedermayer D. Innovations in Bayesian networks [M]. Berlin: Springer Berlin Heidelberg, 2008: 117-130.
  • 6Romessis C, Mathioudakis K. Bayesian network approach for gas path fault diagnosisEJ~. Journal of Engineering for Gas Turbines and Power, 2006, 128(1): 64-72.
  • 7Yongli Z, Limin H, Jinling L. Bayesian networks-based ap- proach for power systems fault diagnosis[J~. IEEE Trans- actions on Power Delivery, 2006, 21(2) : 634-639.
  • 8Srinivas S, Russell S, Agogino A M. Automated construc- tion of sparse Bayesian networks from unstructured proba bilistic models and domain information[EB/OL]. [2016-04- 26]http://www arxlv, org.
  • 9Henrion M. Practical issues in constructing a Bayes' belief network[EB/OL]. [2016- 04 -26[http://www. arxiv, org.
  • 10Darwiche A. Bayesian networksEJ~. Communications of the ACM, 2010, 53(12)= 80-90.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部