期刊文献+

复杂网络的影响可控性 被引量:2

Controlling Complex Networks via Influence
下载PDF
导出
摘要 人们的行为受其他个体和连接彼此的社会网络的影响.研究基于影响网络的重要模型(DeGroot模型),在此模型中,社会网络可用一个加权的有向图表示,网络中的每个个体对某个共同的兴趣问题具有一个初始态度,由于网络中节点的相互影响而会逐步发生改变.提出一种框架用于分析复杂社会网络的影响可控性.结果表明,如果网络中存在持相反观点且对影响免疫的个体,群体对于命题的观点或态度可被固执的个体集合控制.通过分析网络完全影响可控或部分影响可控的条件,得到相应的可控准则.此外,提出控制影响网络的具体方法.由于网络的结构可控性已被广泛用于分析各种复杂网络,分析了网络的影响可控性与结构可控性的关系. Human behavior is profoundly affected by individuals and the social network that links them together. We base our study on the important model of influence network largely due to DeGroot. In this model, the social structure of a society is described by a weighted and possibly directed network. Each node in the network takes an initial position about a common question of interest. At each date, nodes communicate with each other in the social network and update their positions because of the influences from neighbors. This paper presents a framework to analyze the controllability of social complex networks via influence. We show how the opinion, or attitude about some common questions can be controlled by a subset of committed nodes who consistently proselytize the opposing opinion and are immune to influence. Some controllable criteria are established to guarantee that a network can be fully or partially controllable. Besides, the methods to control an influence network are proposed. Because structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks in the physical and life sciences, the relationship between influence controllability and structural controllability of networks is also presented.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第12期2788-2796,共9页 Journal of Computer Research and Development
基金 长江学者和创新团队发展计划基金项目(IRT1078) 国家自然科学基金项目(61173135 61100235 61100230 61100233 61202390 61202389) 陕西省自然科学基础研究计划基金项目(2011JM8004)
关键词 复杂网络 可控性 影响 社会网络 DeGroot模型 complex network controllability influence social network DeGroot model
  • 相关文献

参考文献17

  • 1Albert R,Barabasi A L.Statistical mechanics of complex networks[J].Review of Modern Physics,2002,74(2):47-91.
  • 2Wang Xiaofan,Chen Guanrong.Complex network:Small-world,scale-free and beyond[J].IEEE Circuits and Systems Magazine,First Quarter,2003,3(1):6-20.
  • 3胡钢锋,李德毅,陈桂生,李兵.一种新的复杂网络演化机制研究[J].计算机研究与发展,2007,44(z1):263-267. 被引量:3
  • 4DeGroot M H.Reaching a Consensus[J].Journal of the American Statistical Association,1974,69(345):118-121.
  • 5Jackson M O,Social and Economic Networks[M].Princeton:Princeton University Press,2008.
  • 6Golub B,Jackson M O.Naive learning in social networks and the wisdom of crowds[J].American Economic Journal:Microeconomics,2010,2(1):112-149.
  • 7Golub B,Jackson M O.How homophily affects the speed of learning and best-response dynamics[J].The Quarterly Journal of Economics,2012,127(3):1287-1338.
  • 8Gale D,Kariv S.Beyesian learning in social networks[J].Games and Economic Behavior,2003,45(2):329-346.
  • 9Friedkin N E,Johnsen E C.Social positions in influence networks[J].Social Networks,1997,19(3):209-222.
  • 10Celen B,Kariv S.Distinguishing informational cascades from herd behavior in the laboratory[J].American Economic Review,2004,94(3):484-497.

二级参考文献6

  • 1[2]A L Barabási,R Albert.Emergence of scaling in random network.Science,1999,286:509-512
  • 2[3]R Albert,A L Barabási.Statistical mechanics of complex networks.Review of Modern Physics,2002,74:47-97
  • 3[4]Christopher R Myers.Software systems as complex networks:Structure,function and evolvability of software collaboration graphs.Physical Review E,2003.1-15
  • 4[5]Liu Bin,Li Deyi,He Keqing.Classifying class and finding community in UML metamodel network.In:Proc of the ADMA,LNAI 3584.Berlin:Springer,2005.690-695
  • 5[6]He Keqing,Rong Peng,Bing Li.Design methodology of networked software evolution growth based on software pattern.Journal of System Sciences and Complexity,2006,19(3):21-24
  • 6吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):18-46. 被引量:250

共引文献2

同被引文献17

  • 1Racherla P,Hu C.A Social Network Perspective of Tourism Research Collaborations[J].Annals of Tourism Research,2010,37(4):1012-1034.
  • 2Viswanath B,Mislove A,Cha Ming,et al.On the Evolution of User Interaction in Facebook[C]//Proceedings of the2nd ACM Workshop on Online Social Networks.New York,USA:ACM Press,2009:37-42.
  • 3Roy S D,Lotan G,Zeng Wenjun.The Attention Automaton:Sensing Collective User Interests in Social Network Communities[J].IEEE Transactions on Network Science and Engineering,2015,2(1):40-52.
  • 4Tantipathananandh C,Berger-Wolf T.Constant-factor Approximation Algorithms for Identifying Dynamic Communities[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining.New York,USA:ACM Press,2009:827-836.
  • 5Dinh T N,Xuan Ying,Thai M T.Towards Social-aware Routing in Dynamic Communication Networks[C]//Proceedings of the 28th IEEE International Performance Computing and Communications Conference.Washington D.C.,USA:IEEE Press,2009:161-168.
  • 6Lin Yirong,Chi Yun,Zhu Si,et al.Facet Net:A Framework for Analyzing Communities and Their Evolutions in Dynamic Networks[C]//Proceedings of the17th International Conference on World Wide Web.New York,USA:ACM Press,2008:685-694.
  • 7Su Jianhai,Havens T.Quadratic Program-based Modularity Maximization for Fuzzy Community Detection in Social Networks[J].IEEE Transactions on Fuzzy Systems,2014,99(23):1-16.
  • 8Girvan M,Newman M E J.Community Structure in Social and Biological Networks[J].Proceedings of the National Academy of Sciences,2001,99(12):7821-7826.
  • 9Nguyen N P,Dinh T N,Xuan Ying,et al.Adaptive Algorithms for Detecting Community Structure in Dynamic Social Networks[C]//Proceeedings of the 30th IEEE International Conference on Computer Communications.Washington D.C.,USA:IEEE Press,2011:2282-2290.
  • 10Lancichinetti A,Radicchi F,Ramasco J J,et al.Finding Statistically Significant Communities in Net-works[J].PLOS ONE,2012,6(4):258-265.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部