期刊文献+

一种混合的领域概念分类体系自动构建算法 被引量:2

A Hybrid Algorithm of Automatic Domain Concept Taxonomy Construction
下载PDF
导出
摘要 领域概念分类体系自动构建在人工智能、自然语言处理和信息检索等领域具有重要作用,但现有研究较多关注通用知识,面向特定领域的研究较少,且存在领域概念间关系抽取准确率以及自动构建算法效率较低等问题。为此,提出一种混合的领域概念分类体系自动构建算法,该算法主要包括领域概念间关系抽取模块和分类体系构建模块。领域概念间关系抽取模块设计考虑中文自身的特点,采取句法树和基于规则相结合的方法,以提高抽取领域概念间关系的查准率和查全率;分类体系构建模块设计采取改进的BRT算法,从而在降低算法复杂度的同时,提高领域分类体系构建的查准率。在通信、金融和计算机领域的实验结果均表明,与BRT算法相比,该算法的构建效果较好,查准率最高可达到89.3%。 Domain concept taxonomy automatic construction plays an important role in artificial intelligence,natural language processing and information retrieval. Existing approaches pay more attention on common knowledge, while there are fewer reports about domain concepts. Two main challenges of domain concept taxonomy automatic construction are identifying relationships between concepts and less efficiency of current algorithms. In this paper,a Hybrid algorithm of Automatic Domain concept Taxonomy construction(HADT) is proposed,which has two main modules:extracting relationships between domain concepts and automatic taxonomy construction. Considering Chinese characteristics,the first module uses syntax tree method and rule-based method together,to get the aim of higher precision and higher recall. The second module uses an improved BRT algorithm to reduce time complexity and to improve taxonomy construction precision. The experiments conducted on three datasets of mobile,financial and computer show the HADT algorithm is effectiveness compared with the BRT algorithm,and the highest precision rate is 89. 3%.
作者 罗年洁 吕钊
出处 《计算机工程》 CAS CSCD 2014年第12期57-62,67,共7页 Computer Engineering
基金 国家科技支撑计划基金资助项目(2012BAH74F02) 上海市科委科研基金资助项目(12dz1500205)
关键词 领域概念分类体系 贝叶斯玫瑰树 句法树 domain concept taxonomy Bayesian Rose Tree (BRT) syntax tree
  • 相关文献

参考文献15

  • 1Sadikov E,Madhavan J,Wang Lu,et al.Clustering Query Refinements by User Intent[C]//Proceedings of the19th International Conference on World Wide Web.New York,USA:ACM Press,2010:841-850.
  • 2Perry P,Wise W,O’Neill D,et al.Leveraging a Technical Domain Taxonomy to Enhance Collaboration,Knowledge Sharing and Operational Support[C]//Proceedings of SPE Digital Energy Conference and Exhibition.The Woodlands,USA:Society of Petroleum Engineers,2011:19-21.
  • 3Agirre E,de Lacalle O.Publicly Available Topic Signatures for All Word Net Nominal Senses[C]//Proceedings of LREC’04.Lisbon,Portugal:European Language Resources Association,2004:1123-1126.
  • 4Deshpande O,Lamba D S,Tourn M,et al.Building,Maintaining,and Using Knowledge Bases:A Report from the Trenches[C]//Proceedings of20131nternational Conference on Management of Data.New York,USA:ACM Press,2013:1209-1220.
  • 5Liu Xueqing,Song Yangqiu,Liu Shixia,et al.Automatic Taxonomy Construction from Keywords[C]//Proceedings of the18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:1433-1441.
  • 6Blundell C,Teh Y W,Heller K A.Bayesian Rose Trees[C]//Proceedings of UAI’10.Catalina Island,USA:[s.n.],2010:68-76.
  • 7Monachesi P,Markus T,Mossel E.Ontology Enrichment with Social Tags for e Learning[C]//Proceedings of the4th European Conference on Technology Enhanced Learning.Nice,France:[s.n.],2010:385-390.
  • 8Lupea M,Tatar D,Marian Z.Learning Taxonomy for Text Segmentation by Formal Concept Analysis[C]//Proceedings of Co RR’10.[S.l.]:Springer,2010:84-92.
  • 9Tsui E,Wang W M,Cheung C F,et al.A Conceptrelationship Acquisition and Inference Approach for Hierarchical Taxonomy Construction from Tags[J].Information Processing&Management,2010,46(1):44-57.
  • 10Bai Xiaopeng,Xue Nianwen.Building a Chinese Lexical Taxonomy[C]//Proceedings of the2nd CIPS-SIGHAN Joint Conference on Chinese Language Processing.Tianjin,China:[s.n.],2012.

二级参考文献4

  • 1Lin D,Pantel P.Induction of Semantic Classes from Natural Language Text[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,CA.2001:317-322.
  • 2Maedche A,Staab S.Mining Ontology from Text[C]//Proc.of the 12th International Workshop on Knowledge Engineering and Knowledge Management.2000.
  • 3Mani I.Automatically Inducing Ontologies from Corporate[C]// Proceedings of the 3rd International Workshop on Computational Terminology,Geneva.2004.
  • 4Srivastava S,Lamadrid J G.Extracting an Ontology from a Document Using Singular Value Decomposition[R].Association of Computer and Information Science and Engineering Departments at Minority Institutions,2001.

共引文献15

同被引文献25

  • 1陈昌曙.产业研究论纲[J].自然辩证法研究,1994,10(11):48-54. 被引量:17
  • 2Bishop C M.Pattern Recognition and Machine Lear-ning[M].Berlin,Germany:Springer,2007.
  • 3Jaakkola T,Haussler D.Exploiting Generative Models in Discriminative Classifiers[C]//Proceedings of Conference on Advances in Neural Information Processing Systems.Berlin,Germany:Springer,1999:487-493.
  • 4Lasserre J A,Bishop C M,Minka T P.Principled Hybrids of Generative and Discriminative Models[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2006:87-94.
  • 5Jebara T,Kondor R,Howard A.Probability Product Kernels[J].Journal of Machine Learning Research,2004,5:819-844.
  • 6Dileep A D,Sekhar C C.HMM Based Intermediate Matching Kernel for Classification of Sequential Patterns of Speech Using Support Vector Machines[J].IEEE Transactions on Audio,Speech,and Language Processing,2013,21(12):2570-2582.
  • 7Saunders C,Vinokourov A,Shawe-Taylor J S.String Kernels,Fisher Kernels and Finite State Automata[C]// Proceedings of Advances in Neural Information Processing Systems.Berlin,Germany:Springer,2002:633-640.
  • 8Bicego M,Pekalska E,Tax D M J,et al.Component-based Discriminative Classification for Hidden Markov Models[J].Pattern Recognition,2009,42(11):2637-2648.
  • 9Collazos-Huertas D F,Giraldo-Forero A F,Cárdenas-Pea D,et al.Functional Protein Prediction Using HMM Based Feature Representation and Relevance Analysis[M].Berlin,Germany:Springer,2014.
  • 10Hass J,Weir M D,Giordano F R.Thomas Calculus:Early Transcendentals[M].[S.l.]:Addison-Wesley,2014.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部