期刊文献+

基于布朗桥模型的重要同现模式挖掘 被引量:1

Important Co-occurrence Pattern Mining Based on Brown Bridge Model
下载PDF
导出
摘要 为研究动物迁徙过程中的群体行为特点,需要发现动物的群体性停留区域和时间,然而现有同现模式挖掘算法只关注动物群体同现的瞬时性而未关注同现的持续性。为此,结合同现模式挖掘和经停地分析,提出基于布朗桥模型的重要同现模式挖掘算法。利用布朗桥模型对时空对象的轨迹进行建模,得到轨迹对应的经停地,并在相交经停地中,通过Apriori算法得到重要同现模式。应用青海湖斑头雁的时空数据实验证明了该算法的正确性,并通过分析挖掘出的时空同现模式,发现了斑头雁迁徙过程中的群体性起点区域、终点区域和中途经停区域。 In order to study characteristic of group behavior during the migration of animals,group stopover regions and time of moving objects need to be found,but existing co-occurrence mining algorithms only focus on animal group co-occurrence instantaneity and do not concern with sustainability. To solve the problem,this paper proposes a algorithm for mining important co-occurrence patterns based on Brown bridge model. It finds stopover regions of objects using Brown bridge model and finds important co-occurrences using an Apriori algorithm in the intersections of stopover regions. After all,an experiment using the spatio-temporal data of bar-headed goose in the Qinghai Lake Area is made to prove correctness of the algorithm. By mining the important co-occurrence patterns in the experiment, the group starting regions,ending regions and stopover regions during the migration of the bar-headed gooses are found by analyzing the spatio-temporal mode.
出处 《计算机工程》 CAS CSCD 2014年第12期63-67,共5页 Computer Engineering
基金 国家自然科学基金资助项目(中美软件合作研究项目)(61361126011)
关键词 时空数据挖掘 重要同现模式 布朗桥 经停地区域 轨迹建模 概率模型 spatio-temporal data mining important co-occurrence pattern Brown bridge stopover region trajectory modeling probability model
  • 相关文献

参考文献13

  • 1Antunes C M,Oliveira A L.Temporal Data Mining:An Overview[C]//Proceedings of KDD Workshop on Temporal Data Mining.New York,USA:ACM Press,2001:1-13.
  • 2Miller H J,Han Jiawei.Geographic Data Mining and Knowledge Discovery[M].Boca Raton,USA:CRC Press,2009.
  • 3刘大有,陈慧灵,齐红,杨博.时空数据挖掘研究进展[J].计算机研究与发展,2013,50(2):225-239. 被引量:126
  • 4Morimoto Y.Mining Frequent Neighboring Class Sets in Spatial Databases[C]//Proceedings of the7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2001:353-358.
  • 5Huang Yan,Xiong Hui,Shekhar S,et al.Mining Confident Co-location Rules Without a Support Threshold[C]//Proceedings of the18th ACM Symposium on Applied Computing.New York,USA:ACM Press,2003:497-501.
  • 6Shekhar S,Huang Yan.Discovering Spatial Co-location Patterns:A Summary of Results[C]//Proceedings of the7th International Symposium on Spatial and Temporal Databases.Berlin,Germany:Springer,2001:236-256.
  • 7Estivill-Castro V,Lee I.Data Mining Techniques for Autonomous Exploration of Large Volumes of Georeferenced Crime Data[C]//Proceedings of the6th International Conference on Geocomputation.New York,USA:[s.n.],2001:24-26.
  • 8Estivill-Castrol V,Murray A T.Discovering Associations in Spatial Data——An Efficient Method Based Approach[C]//Proceedings of the2nd Pacific-Asia Conference on Knowledge Discovery and Data Mining.Berlin,Germany:Springer,1998:110-121.
  • 9Huang Yan,Zhang Pusheng.On the Relationships Between Clustering and Spatial Co-location Pattern Mining[J].International Journal on Artificial Intelligence Tools,2008,17(1):55-70.
  • 10Xiao Xiangye,Xie Xing,Luo Qiong,et al.Density Based Co-location Pattern Discovery[C]//Proceedings of the16th International Conference on Advances in Geographic Information Systems.New York,USA:ACM Press,2008:29-34.

二级参考文献141

  • 1张炜,李建中,刘禹.一种基于概率模型的预测性时空区域查询处理[J].软件学报,2007,18(2):279-290. 被引量:2
  • 2Antunes C M,Oliveira A L. Temporal data mining:An overview[A].New York:ACM,2001.1-13.
  • 3Roddick J F,Spiliopoulou M. A survey of temporal knowledge discovery paradigms and methods[J].IEEE Transactions on Knowledge and Data Engineering,2002,(04):750-767.
  • 4Laxman S,Sastry P S. A survey of temporal data mining[J].Sadhana,2006,(02):173-198.
  • 5Fu T C. A review on time series data mining[J].Engineering Applications of Artificial Intelligence,2011,(01):164-181.
  • 6Koperski K,Adhikary J,Han J. Knowledge discovery in spatial databases:Progress and challenges[A].New York:ACM,1996.55-70.
  • 7Shekhar S,Zhang P,Huang Y. Data Mining:Next Generation Challenges and Future Directions[M].Cambridge,ma:the Mit Press,2004.357-380.
  • 8Shekhar S,Zhang P,Huang Y. Data Mining and Knowledge Discovery Handbook[M].Beilin:Springer-Verlag,2010.837-854.
  • 9Miller H J,Han J. Geographic Data Mining and Knowledge Discovery[M].London:taylor and Francis,2001.
  • 10Mennis J,Guo D. Spatial data mining and geographic knowledge discovery-An introduction[J].Computers,Environment and Urban Systems,2009,(06):403-408.

共引文献125

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部