期刊文献+

一种支持视频检索的对象标志位编码算法

An Object Flags Encoding Algorithm Supporting Video Retrieval
下载PDF
导出
摘要 针对传统标志位编码算法的编码代价大、海量监控视频难于浏览等问题,提出一种支持视频检索的对象标志位高效编码算法。基于对象区域信息、语义信息生成标志位来存储监控视频,根据视频编码和视频分析结果,生成对象区域信息与语义信息,利用基于区域生长的帧内编码算法消除空域冗余,基于运动估计的帧间编码算法从分像素精度上消除时域冗余,将对象区域信息、语义信息同时编码到原始视频码流中,实现监控视频的快速浏览与检索。实验结果表明,与基于欧式距离的帧内编码算法相比,该帧内编码算法的编码代价降低4%~14%,帧间编码算法降低28%~48%;基于对象标志位的视频解码能生成用户感兴趣的检索视频,提高用户浏览效率。 Aiming at the problem that traditional flags coding methods cost too much and the mass surveillance video is hard to browse,this paper proposes an efficient object flags coding algorithm supporting video retrieval. The algorithm generates the object flags to store the surveillance video based on object area information and semantic information. The object region information and semantic information can be generated according to the result of video coding and video analysis. In order to reduce the airspace redundant, a novel region information coding algorithm based on intra-frame region growing is proposed. And inter-frame object flags coding algorithm which is based on motion estimation eliminates the temporal redundancy further with sub-pixel precision. Then it writes the encoded object area information, semantic information into original video stream. Experimental results show that, compared with the coding algorithm based on Euclidean distance,the proposed intra-frame object flags coding algorithm makes the coding cost reduced by 4% ~14% , and inter-frame algorithm is reduced by 28% ~48% . Video decoding based on object flags can improve the efficiency of the user to browse by generating user interested video.
出处 《计算机工程》 CAS CSCD 2014年第12期287-291,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61170121) 江苏省研究生培养创新工程基金资助项目(CXLX12_0725)
关键词 标志位 区域生长 运动估计 分像素精度 视频检索 flags region growing motion estimation sub-pixel precision video retrieval
  • 相关文献

参考文献15

  • 1Sikora T.The MPEG-4Video Standard Verification Model[J].IEEE Transactions on Circuits and Systems for Video Technology,1997,7(1):19-31.
  • 2Zhou L,Zahir S.A Novel Shape Coding Scheme for MPEG-4Visual Standard[C]//Proceedings of the1st International Conference on Innovative Computing,Information and Control.[S.l.]:IEEE Press,2006:585-588.
  • 3Wang S,Xu W,Wang C,et al.A Framework for Surveillance Video Fast Browsing Based on Object Flags[M].New York,USA:Springer,2013:411-421.
  • 4ITU-T.Recommendation H.264.Advanced Video Coding for Generic Audiovisual Services[EB/OL].(2005-05-17).http://www.itu.int/rec/T-REC-H.264/en.
  • 5黄志伟,陈元枝,王师峥,蔡续.一种支持监控视频可伸缩快速浏览的区域信息编码方法[J].小型微型计算机系统,2013,34(11):2647-2651. 被引量:1
  • 6Petkovic M.Content-based Video Retrieval[M].New York,USA:Springer-Verlag,2000.
  • 7Geetha P,Narayanan V.A Survey of Content-based Video Retrieval[J].Journal of Computer Science,2008,4(6):325-331.
  • 8胡双演,李俊山,李建军.基于潜在语义分析的视频检索[J].计算机工程,2007,33(13):216-217. 被引量:3
  • 9Liu Feng,Zhuang Yueting,Wu Fei,et al.3D Motion Retrieval with Motion Index Tree[J].Computer Vision and Image Understanding,2003,91(3):94-101.
  • 10Padmakala S,Anandha Mala G S,Shalini M.An Effective Content Based Video Retrieval Utilizing Texture,Color and Optimal Key Frame Features[C]//Proceedings of2011International Conference on Image Information Processing.[S.l.]:IEEE Press,2011:1-6.

二级参考文献8

  • 1赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,2000..
  • 2Sdaroff S,Cascia M L,Sethi S.Unifying Textual and Visual Cues for Content-based Image Retrieval on WWW[J].Computer Vision and Image Understanding,1999,75(1/2):86-98.
  • 3Souvannavong F,Merialdo B,Huet B.Video Content Modeling with Latent Semantic Analysis[C]//Proc.of the 3rd International Workshop on Content-based Multimedia Indexing.2003.
  • 4Pavel B.Survey of Clustering Data Mining Techniques[R].San Jose,CA:Accrue Software Inc.,2002.
  • 5Liu Xin,Gong Yihong.Video Summarization and Retrieval Using Singular Value Decomposition[J].Journal of ACM Multimedia Systems,2003,9(2):157-168.
  • 6Deerwester S,Dumais S T,Landauer T K.Indexing by Latent Semantic Analysis[J].Journal of the American Society for Information Science,1990,41(6):391-407.
  • 7杨雪,李馨,孙琳琳.视频摘要技术及其在数字图书馆中的应用[J].医学信息学杂志,2011,32(1):72-74. 被引量:1
  • 8刘彩云,曹建荣,李洪艳.基于对象的视频摘要技术[J].计算机系统应用,2012,21(1):204-207. 被引量:3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部