期刊文献+

负向等谱4位势Ablowitz-Ladik方程的类有理解 被引量:2

Rational-like solutions for a negative order isospectral four-potential Ablowitz-Ladik equation
下载PDF
导出
摘要 研究了负向等谱4位势Ablowitz-Ladik方程,给出满足矩阵方程的广义双Casoratian解.进一步地,将矩阵取成特殊的形式,导出了该方程的孤子解和类有理解. In this paper,the generalized double Casoratian solutions whose entries satisfy matrix equation for a negative or-der isospectral four-potential Ablowitz-Ladik equation are presented.Moreover,the soliton solution and rational-like solu-tions are derived by letting the general matrix be some special cases.
作者 程瑜
出处 《江苏师范大学学报(自然科学版)》 CAS 2014年第4期36-39,共4页 Journal of Jiangsu Normal University:Natural Science Edition
基金 江苏省高校自然科学基金资助项目(13KJD110009)
关键词 负向等谱4位势 Ablowitz-Ladik 方程 广义双 Casoratian 类有理解 negative order isospectral four-potential Ablowitz-Ladik equation generalized double Casoratian solution rational-like solution
  • 相关文献

参考文献2

二级参考文献10

  • 1Freeman N C,Nimmo J J.Soliton solutions of the KdV and KP equations: the Wronskian technique. Phys Lett A . 1983
  • 2Matveev V B.Generalized Wronskian formula for solutions of the KdV equation: first applications. Phys Lett A . 1992
  • 3Ma W X,You Y C.Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc . 2005
  • 4Ablowitz M J,Kaup D J,Newell A C, et al.The inverse scattering transform-Fourier analysis for nonlinear problems. Studies in Applied Mathematics . 1974
  • 5Zhang D J,Hietarinta J.Generalized double-Wronskian solutions to the NLSE. . 2005
  • 6Ma W X.Wronskian, generalized Wronskian and solutions to the Korteweg-de Vries equation. Chaos Soli- tons Fraetals . 2004
  • 7Ma W X.Complexiton solution to the KdV equation. Phys Lett A . 2002
  • 8S. Sirianunpiboon,S. D. Howard and S. K. Roy.A note on the wronskian form of solutions of the KdV equation. Physics Letters . 1988
  • 9耿献国.DARBOUX TRANSFORMATION OF THE DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM[J].Acta Mathematica Scientia,1989,9(1):21-26. 被引量:8
  • 10CHEN Shou-Ting,ZHU Xiao-Ming,LI Qi,CHEN Deng-Yuan.N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J].Chinese Physics Letters,2011,28(6):5-8. 被引量:2

共引文献8

同被引文献23

  • 1CHEN DenYuan,ZHANG DaJun,BI JinBo.New double Wronskian solutions of the AKNS equation[J].Science China Mathematics,2008,51(1):55-69. 被引量:8
  • 2陈登远,张大军,毕金钵.AKNS方程的新双Wronski解[J].中国科学(A辑),2007,37(11):1335-1348. 被引量:11
  • 3YUQIN YAO,DAJUN ZHANG,DENGYUAN CHEN.THE DOUBLE WRONSKIAN SOLUTIONS TO THE KADOMTSET–PETVIASHVILI EQUATION. Modern Physics Letters A . 2008
  • 4Da‐JunZhang,Shou‐TingChen.??Symmetries for the Ablowitz–Ladik Hierarchy: Part I. Four‐Potential Case(J)Studies in Applied Mathematics . 2010 (4)
  • 5J. J. C. Nimmo and N. C. Freeman.A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian. Physics Letters . 1983
  • 6Hirota R,Ito M,Kako F.Two-dimensional Toda lattice equations. Progress of Theoretical Physics Supplement . 1988
  • 7Liu Q M.Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies. Journal of the Physical Society of Japan . 1990
  • 8Gegenhasi,Hu, Xing-Biao,Levi, Decio.On a discrete Davey-Stewartson system. Inverse Problems . 2006
  • 9Wen Zhai,Deng-yuan Chen.??Rational solutions of the general nonlinear Schr?dinger equation with derivative(J)Physics Letters A . 2008 (23)
  • 10J.J.C. Nimmo.A bilinear B?cklund transformation for the nonlinear Schr?dinger equation. Physics Letters . 1983

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部