期刊文献+

一步电沉积制备石墨烯-氧化锌纳米墙复合物高灵敏检测氯霉素 被引量:2

One-Step Co-Electrodeposition of Graphene-Zinc Oxide Nanowalls Composite for Highly Sensitive Detection of Chloramphenicol
下载PDF
导出
摘要 采用一步电沉积技术同步实现了氧化石墨烯(RGNO)的还原和氧化锌(ZnO)的电沉积,从而制得石墨烯-氧化锌纳米墙(GZNWs)。在形成过程中,氧化石墨烯中可充当活性位点的含氧基团起了关键作用。通过扫描电子显微镜和差分脉冲伏安法,对制得的电化学还原石墨烯-氧化锌复合物(ERGNO-ZnO)的形貌及电化学性质等进行了表征。结果表明,由于具有增强的活性表面积,更精细的结构,超级电子转移能力,具有独特纳米墙形貌的ERGNO-ZnO可望应用于传感领域,其规整排列的纳米墙形貌和大的比表面积为氯霉素(CAP)在电极上的电子交换提供了有利条件。实现了对氯霉素的高灵敏检测,检测范围1.0×10^-7~1.0×10^-3 mol·L^-1,检测限达到6.7×10^-8 mol·L^-1。 One-step co-electrodeposition was applied to prepare graphene-zinc oxide nanowalls(GZNWs)composite,where graphene oxide was electrochemically reduced and zinc oxide was electrodeposited simultaneously.The formation of GZNWs might be ascribed to the oxygen-containing functional groups of GNO,which play a critical role serving as active sites in the preparation of ZnO nanowall arrays.Due to the enlarged active surface area,more subtle structure,and superior electron transfer capability,the GZNWs with special nanowall morphology shows potential applications in sensors.As an example,the unique growth direction and large surface area of GZNWs provided favorable conditions for the electronic exchange of chloramphenicol on the electrode.The morphology and electrochemical properties of the prepared composite were characterized using scanning electron microscopy(SEM)and differential pulse voltammetry(DPV).And the excellent nanocomposite can serve as a highly efficient electrocatalyst for chlor-amphenicol via DPV.The dynamic detection range was from 1.0 × 10^-7 mol·L^-1 to1.0 × 10^-3 mol·L^-1 with a detection limit of 6.7 × 10^-8 mol·L^-1.
出处 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2014年第6期577-581,596,共6页 Journal of Qingdao University of Science and Technology:Natural Science Edition
基金 国家自然科学基金项目(21275084 20975057) 山东省博士基金项目(BS2012CL013) 青岛市科技发展计划项目(12-1-4-3-(23)-jch)
关键词 一步电沉积 石墨烯 氧化锌 纳米墙 氯霉素 one-step co-electrodeposition graphene zinc oxide nanowalls chloramphenicol
  • 相关文献

参考文献17

  • 1Kuo D H,Fang J F,Chen R S,et al.ZnO nanomaterials grown with fe-based catalysts[J] .J Phys Chem C,2011,115:12260-12268.
  • 2Wu Z,Qin L M,Fan Q M.Fabrication and electrochemical behavior of flower-like ZnO-CoO-C nanowall arrays as anodes for lithium-ion batteries[J] .J Alloys Compd,2011,509:9207-9213.
  • 3Jung S H,Oh E,Lee K H,et al.Sonochemical preparation of shap-selective ZnO nanostructures,crystal growth & de sign[J] .Cryst Growth Des,2008,8:265-269.
  • 4Luo Q P,Yu X Y,Lei B X,et al.Reduced graphene oxidehierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity[J] .J Phys Chem C,2012,116:8111-8117.
  • 5Zou R J,Zhang Z Y.Yu L,et al.A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications[J] .Chem Eur J,2011,17:13912-13917.
  • 6Khelladi M R,Mentar L,Boubatr M.Study of nucleation and growth process of electrochemically synthesized ZnO nanostructures[J] .Mater Lett,2012,67:331-333.
  • 7Hu F,Chan K C,Yue T M.Dynamic template assisted electrodeposition of porous ZnO thin films using a triangular potentialwaveform[J] .J Phys Chem C,2010,114:5811-5816.
  • 8Guo H L,Wang X F,Qian Q Y.A green approach to the synthesis ofgraphene nanosheets[J] .ACS Nano,2009,3:2653-2659.
  • 9Yang T,Guan Q,Guo X H,et al.Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis[J] .Anal Chem,2013,85:1358-1366.
  • 10Yang T,Kong Q Q,Li Q H,et al.One-step electropolymerization of xanthurenic acid-graphene film prepared by pulse potentiostatic method for simultaneous detection of guanine and adenine[J] .Polym Chem,2014,5:2214-2218.

二级参考文献22

  • 1林丽,仇佩虹,杨丽珠,曹旭妮,金利通.纳米银粒子修饰电极法测定血红蛋白[J].分析化学,2006,34(1):31-34. 被引量:28
  • 2谭学才,麦智彬,韦冬萍,邓光辉,黄在银,蔡沛祥.多壁碳纳米管-Nafion复合膜修饰玻碳电极测定硝苯地平的研究[J].分析化学,2007,35(4):495-499. 被引量:13
  • 3唐小兰,王立世,张淑婷,张水锋,邓雪蓉,刘笑笑.纳米银掺杂炭气凝胶修饰电极对卤素离子的电化学响应[J].分析化学,2007,35(2):216-220. 被引量:7
  • 4叶赛,胡莹莹,张奎文,那广水,姚子伟,王菊英,马德毅.高效液相色谱-串联质谱测定海水中氯霉素残留量[J].分析试验室,2007,26(2):22-25. 被引量:14
  • 5Laviron E.. General expression of the liner potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem.. 1979,101(1) :19-28.
  • 6Laviron E.. Adsorption, autoinbition and autocatalysis in polarography and in liner potential sweep voltammetry [J]. J. Electro anal. Chem. , 1974,52(3) : 355-- 393.
  • 7(美)阿伦.J.巴德,拉里.R.福克纳著.邵元华朱果逸,董献堆,张柏林译.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005.
  • 8Christian H, Bernd L, Hans S. Determination of chloramphenicol in animal tissue using high-- performance liquid chromatography with a column--switching system and ultraviolet detection[J]. J Chromatogr, 1995, 668:53 -- 58.
  • 9Lindino CA, Bulhoes LOS. Determination of chloramphenicol in tablets by electrogenerated chemiluminescence [J]. J Rev Assoc Chem Bras, 2004,15(2):178.
  • 10Gikas E, Kormali P, Tsipi D, et al. Development of a rapid and sensitive SPE-LC ESI MS/MS method for the determination of chloramphenicol in seafood[J]. J Agric Food Chem,2004, 52(5): 1025.

共引文献3

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部