期刊文献+

集成模型ARIMAX-GARCH及其在股票预测中的应用

Integrated Model ARIMAX GARCH and Its Applications in Stock Forecast
下载PDF
导出
摘要 在分析ARIMAX模型与GARCH模型的预测特性和优劣的基础上,建立了基于两者集成的ARIMAX-GARCH模型,其基本思想是充分发挥两种模型在回归与序列波动性因素提取方面的优势.对从5大行业中随机抽取的10只只股票的实证分析表明,该集成模型在股票预测中的准确率与稳定性显著优于两个单一模型. Based on the analysis of the performance of multiple stationary time series of ARIMAX and GARCH models, this paper sets up a new model which integrates ARIMAX with GARCH. The new model has the advantage of regression in ARIMAX and the superiority of extracting volatility in GARCH. The result of empirical analysis about ten shares from five industries which are grabbed at random shows that the proposed model has better accuracy and stability in stock forecast than every single model.
出处 《绍兴文理学院学报》 2014年第9期60-63,共4页 Journal of Shaoxing University
关键词 时间序列 ARIMAX模型 GARCH模型 ARIMAX—GARCH模型 股票预测 time series ARIMAX GARCH ARIMAX-GARCH stock forecast
  • 相关文献

参考文献6

  • 1George EP Box, Gwilym M Jenkins. Time Series Analysis : Forecasting and Control [ M ]. California : Holden- Day, 1976.
  • 2Robert F Engle, CWJ Granger. Co-Integration and Error Correction:Representation, Estimation and Testing [ J ]. Econometrica, 1987,55 (2) :251 - 276.
  • 3Robert F Engle, Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United King- dom Inflation [ J ]. Econometrica, 1982,50 (4) : 987 - 1007.
  • 4Tim Bollerslev. Generalized Autoregressive Conditional Heteroskedasticity [ J ]. Journal of Econometrics, 1986,31 (3) :307 -327.
  • 5唐齐鸣,陈健.中国股市的ARCH效应分析[J].世界经济,2001,24(3):29-36. 被引量:138
  • 6熊志斌.基于ARIMA与神经网络集成的GDP时间序列预测研究[J].数理统计与管理,2011,30(2):306-314. 被引量:76

二级参考文献22

  • 1刘兰娟,谢美萍.基于自适应小波神经网络的数据挖掘方法研究——对我国石油产量的预测分析[J].财经研究,2006,32(3):114-120. 被引量:4
  • 2汤果.FIGARCH模型对股市收益长忆性的实证分析[J].统计研究,2000,(1).
  • 3Khashei M, Bijari M, Ardali G A R. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks [J]. Neurocomputing, 2009, (72): 956 -967.
  • 4Zhang G, Patuwo B E, Hu Y M. Forecasting with artificial neural networks: the state of the art [J]. International Journal of Forecasting, 1998, (14): 35- 62.
  • 5Kaastra, Boyd M. Designing a neural network for forecasting financial and economic time-series [J]. Neurocomputing, 1996, 10: 215-236.
  • 6Chen Y, Yang B, Dong J, Abraham A. Time-series forecasting using flexible neural tree model [J]. Inf. Sci. 2005, 174:219- 235.
  • 7Diordano F, La Rocca M, Perna C. Forecasting nonlinear time series with neural network sieve bootstrap [J]. Comput. Stat. Data Anal. 2007, 51: 3871-3884.
  • 8Andre Luis S Maia, Francisco de A T de Carvalho, Teresa B Ludermir. Forecasting models for interval-valued time series [J]. Neurocomputing, 2008, 71:3344 -3352.
  • 9Wedding, H D K, Cios K J. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model [J]. Neurocomputing, 1996, (10): 149 -168.
  • 10Tseng, F M, Yu H C, Tzeng O H. Combining neural network model with seasonal time series ARIMA model [J]. Technological Forecasting and Social Change, 2002, (69): 71-87.

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部