期刊文献+

基于改进型DLIA的AFM探针高速振幅检测

High Speed Amplitude Measurement of AFM Probe Vibration Based on Modified Digital Lock-in Amplifiers
下载PDF
导出
摘要 轻敲模式是原子力显微镜(AFM)最为常见的扫描模式之一。轻敲模式以探针振动信号幅值作为反馈信号,实行实时检测。目前,有模拟检测和数字检测两种检测方法,模拟检测方法由于模拟器件固有的温漂导致误差较大,数字检测方法误差小但运算量较大。提出了一种实时检测轻敲模式信号振幅的改进型数字锁相放大器(MDLIA),在自制的AFM扫描成像系统中同时具备误差较小和运算量较小两个优点。MDLIA使用与振动信号同频同相的方波信号作为参考信号,因此仅采用单通道运算即可检测振动信号幅值。首先通过理论分析介绍了MDLIA的原理,然后介绍各组成部分及实现过程,最后通过运算耗时实验验证MDLIA运算量小且运算速度快的特点,并通过误差对比实验证明MDLIA误差较小,同时通过标准栅格扫描实验验证MDLIA的稳定性。 Tapping mode is one of the most commonly used scan modes in atomic force microscope (AFM). The amplitude of probe vibration signal as feedback signal in tapping mode scan is mea- sured in real time. Currently, there are two kinds of measurement methods, including analog measurement and digital measurement. The analog measurement method has larger error because of intrinsic thermal drift of analog devices, and the digital measurement method realizes less error but has larger calculation. A modified digital lock-in amplifier (MDLIA) for real-time amplitude measurement in tapping model was presented. There are two advantages of less error and less cal- culation in the custom-built AFM scanning image system. The square wave signal with the same frequency and phase as the vibration signal was used as the reference signal in the MDLIA, there- fore the vibration signal amplitude was measured by the one-channel calculation. Firstly, the principle of the MDLIA was introduced by the theoretically analysis, then all components and im- plementation processes were introduced. Finally, the MDLIA was validated through three kindsof experiments. The less calculation and higher speed of the MDLIA were validated by calculation time consumption experiments, the less error of the MDLIA was validated by error comparison experiments, and the stability of the MDLIA was validated by standard grating scan experiments.
出处 《微纳电子技术》 CAS 北大核心 2014年第12期791-797,共7页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61304251) 国家高技术研究发展计划(863计划)资助项目(2012AA041204)
关键词 原子力显微镜(AFM) 轻敲模式 幅值检测 数字锁相放大器(DLIA) 单通道 atomic force microscope (AFM) tapping mode amplitude measurement digitallock-in amplifier (DLIA) ~ single channel
  • 相关文献

参考文献11

  • 1BINNIG G,QUATE C F,GERBER C.Atomic force microscope[J].Physical Review Letters,1986,56:930-933.
  • 2GILMORE J L,AIZAKI H,YOSHIDA A,et al.Nanoimaging of ssRNA:genome architecture of the hepatitis C virus revealed by atomic force microscopy[J].Journal of Nanomedicine and Nanotechnology,2014(S5):010-1-010-7.
  • 3王艳霞,李艳宁,傅星,李正光,胡小唐.原子力显微镜在生物力测量中的应用[J].微纳电子技术,2003,40(7):228-230. 被引量:6
  • 4RESTA A,LEONI T,BARTH C,et al.Atomic structures of silicene layers grown on Ag(111):scanning tunneling microscopy and noncontact atomic force microscopy observations[J].Scientific Reports,2013(3):02399-1-02399-6.
  • 5ZHANG D,WANG Y,GAN Y.Characterization of critically cleaned sapphire single-crystal substrates by atomic force microscopy,XPS and contact angle measurements[J].Applied Surface Science,2013,274(1):405-417.
  • 6KASAS S,LONGO G,DIETLER G.Mechanical properties of biological specimens explored by atomic force microscopy[J].Journal of Physics:D,2013,46(13):133001-1-133001-12.
  • 7田孝军,王越超,席宁,董再励.基于AFM的机器人化纳米操作中纳观力的初步研究[J].机器人,2007,29(4):363-367. 被引量:6
  • 8GIANNAZZO F,DERETZIS I,NICOTRA G,et al.Electronic properties of epitaxial graphene residing on SiC facets probed by conductive atomic force microscopy[J].Applied Surface Science,2014,291(1):53-57.
  • 9RUGAR D,BUDAKIAN R,MAMIN H J,et al.Single spin detection by magnetic resonance force microscopy[J].Nature,2004,430(6997):329-332.
  • 10MASCIOTTI J M,LASKER J M,HIELSCHER A H.Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency[J].IEEE Transactions on Instrumentation and Measurement,2008,57(1):182-189.

二级参考文献32

  • 1田孝军,王越超,刘连庆,焦念东,董再励,席宁.具有三维力反馈的原子力显微镜纳米操作系统[J].仪器仪表学报,2006,27(7):661-665. 被引量:12
  • 2孙志斌,陈佳圭.锁相放大器的新进展[J].物理,2006,35(10):879-884. 被引量:38
  • 3[1]CREIGHTON T. Proteins: Structures and Molecular Properties [M]. New York: W.H. Freeman, 1993.
  • 4[2]HEINZ W F, HOH J H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope [J]. Trends Biotechnol., 1999, 17: 143-150.
  • 5[3]ASHKIN A, DZIEDZIC J M, YAMANE T. Optical trapping and manipulation of single cells using infrared laser beams [J]. Nature, 1987, 330: 769-771.
  • 6[4]ENGEL A, LYUBCHENKO Y, MUELLER D. Atomic force microscopy: a powerful tool to observe biomolecules at work [J]. Trends Cell Biol, 1999, 9: 77-80.
  • 7[5]FLORIN E L, MOY V T, GAUB H E.Adhesion forces between individual ligand-receptor pairs[J].Science, 1994, 264: 415.
  • 8[6]WONG J, CHILKOTI A, MOY V T. Direct force measurements of the streptavidin-biotin interaction [J]. Biomolecular Engineering, 1999: 1645-1655.
  • 9[7]DAMMER U, POPESCU O, WAGNER P, et al. Binding strength between cell adhesion protogltycans measured by atomic force microscopy [J]. Science, 1995, 267: 1173.
  • 10[8]LEE G U, CHRISEY L A, COLTON R J. Direct measurement of the force between complementary strands of DNA [J]. Science, l994, 266: 771-772.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部