期刊文献+

动态S盒的密码性质 被引量:2

Cryptographic Property of Dynamic S-box
原文传递
导出
摘要 刘国强和金晨辉给出了动态S盒差分概率的定义,分析了其不可能差分的特性、最大差分概率的上界及可达性,这是首个从动态S盒的概念和性质方面的研究。沿着这个方向,本文给出动态线性概率、动态非线性度、动态代数次数、动态代数免疫阶等定义,分析了这些动态性能指标的界及可达性,并用仿真模拟的方法验证了定义的合理性和定理的正确性,同时还分析了动态S盒的性能随规模变化的规律。 LIU Guo-qiang and JIN Chen-hui gives the definition of differential probability for dynamic S- box, analyze the charicteristics of impossible difference and the upper-bound and accessibility of maximum differential probability for dynamic S-box. This is the first try on the research of dynamic S-box' s defini- tion and properties. In light of this, the definitions of dynamic linear probability, dynamic nonlinearity, dy- namic algebraic degree and dynamic algebraic immunity are proposed, and the bounds of these cryptograph- ic criterions and the accessibility of these bounds analyzed. Simulation experiments verify the rationality and validity of the definitions. Meanwhile, the rule of dynamic property with the change of dynamic S- box's size is also given.
作者 申兵 霍家佳
出处 《通信技术》 2014年第12期1429-1433,共5页 Communications Technology
基金 国家自然科学基金(No.61309034)资助 四川省科技厅杰出青年基金项目(2014JQ0055)资助~~
关键词 动态S盒 动态差分概率 动态线性概率 动态非线性度 动态代数次数 动态代数免疫阶 dynamic S-box dynamic differential probability dynamic linear probability dynamic nonlin- earity dynamic algebraic degree dynamic algebraic immunity
  • 相关文献

参考文献2

二级参考文献16

  • 1殷新春,杨洁,谢立.密钥控制的多S盒Rijndael算法[J].通信学报,2007,28(9):125-132. 被引量:3
  • 2C. Cariet, P. Charpin and V. Zinoviev, "Codes, bent func?tions and permutations suitable for DES-like cryptosystems", Designs, Codes and Cryptography, Vo1.15, No.2, pp.125-156. 1998.
  • 3K. Nyberg, "Differentially uniform mappings for cryptography" , Proceedings of EUROCRYPT'93, LNCS 765, pp.55-64, 1994.
  • 4L. Budaghyan, C. Carlet and G. Leander, "Constructing new APN functions from known ones", Finite Fields and Their Ap- plications, Vol.15, No.2, pp.150-159, 2009.
  • 5L. Budaghyan, C. Cariet, G. Leander, "Two classes of quadratic APN binomials inequivalent to power functions", IEEE Trans. Inform. Theory, Vol.54, No.9, pp.4218-4229, 2008.
  • 6C. Bracken, G. Leander, "A highly nonlinear differentially 4 uni?form power mapping that permutes fields of even degree", Finite Fields and Their Applications, Vol.16, No.4, pp.231-242, 2010.
  • 7K. Browning, J.F. Dillon, R.E. Kibler and M. McQuistan, "APN polynomials and related codes", Special volume of Journal of Combinatorics, Information and System Sciences, honoring the 75-th birthday of Prof. D.K. Ray-Chaudhuri, Vol.34, No. 1-4, pp.135-159, 2009.
  • 8C. Cariet, "Relating three nonlinearity parameters of vectorial functions and building APN functions from bent functions", Designs, Codes and Cryptography, Vol. 59, No.1-3, pp.89-109, 2011.
  • 9J.F. Dillon, "APN polynomials: an update (ppt)", Fq9, The 9th International Conference on Finite Fields and Applications, Dublin, Ireland, 2009.
  • 10Y. Edel, A. Pott, "A new almost perfect nonlinear function which is not quadratic", Adv. Math. Commun., Vol. 3, pp.59- 81, 2009.

共引文献12

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部