期刊文献+

基于全方位视觉的移动机器人运动目标检测 被引量:2

Moving Object Detection in Omnidirectional Vision Based Mobile Robot
下载PDF
导出
摘要 针对移动机器人动态背景下运动目标的检测,提出一种基于全方位视觉的检测算法。首先,改进了SIFT算法中的特征点提取方法,在将图像划分为若干网格后,再根据特征点所在位置的局部区域熵对每个网格中的候选特征点进行筛选;其次,在SIFT点匹配后采用RANSAC算法去除误匹配点,以提高背景补偿的精度;最后用帧差法检测出运动目标。实验表明,该算法减少了SIFT点的获取时间,并具有良好的鲁棒性,能准确地在机器人运动过程中检测出运动目标。 According to the detection of moving object based on mobile robot under dynamic background, an algorithm of detection based on omnidirectional vision is proposed. The method of extracting feature points is improved in the SIFT algorithm. After dividing the image as grid ceils, the feature points of each grid cell are selected according to the entropy of local region around the feature point. Then after matching SIFT points, it employs RANSAC algorithm eliminate the mismatching points to improve the accu- racy of the background compensation. Finally, frame difference method is used to detect the moving object. Experimental results show that with a better robustness, the proposed algorithm decreases the time of extracting feature points and it can detect the moving object while robot is moving.
出处 《电视技术》 北大核心 2015年第1期117-120,126,共5页 Video Engineering
基金 浙江省重点科技创新团队项目(2010R50020) 国家自然科学基金项目(50905170 61007012)
关键词 动态背景 全方位视觉 SIFT 局部区域熵 背景补偿 dynamic background omnidirectional vision SIFT entropy of local region background compensation
  • 相关文献

参考文献10

二级参考文献37

  • 1Sagawa R, Aoki N, Mukaigawa Y, et al. Mirror Localization for a Catadioptric Imaging System by Projecting Parallel Lights[C] //IEEE International Conference on Robotics and Automation, Roma, April 10-14, 2007: 3957-3962.
  • 2Wallhoff F, Zobl M, Rigoll G, et al. Face Tracking in Meeting Room Scenarios Using Omnidirectional Views[C]//Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Washington, DC, USA, Aug 23-26, 2004, 4: 933-936.
  • 3Rainer Stiefelhagen, CHEN Xi-lin, YANG Jie. Capturing Interactions in Meetings with Omni- directional Cameras [J]. International Journal of Distanee Education Technologies(S1539-3100), 2005, 3(3): 32-45.
  • 4OHARA Y, SAGAWA R, ECHIGO T, et al. Gait Volume: Spatio-Temporal Analysis of Walking [J]. Forum on Information Technology, 2004: 171-174.
  • 5Hiroshi Ishiguro, Kim C Ng, Richard Capella, et al. Omni-directional image-based modeling: three approaches to approximated plenoptic representations [J]. Machine Vision and Applications(S0932-8092), 2003, 14(2): 94-102.
  • 6Babaguchi N, Fujimoto Y, Yamazawa K, et al. A System for Visualization and Summarization of Omnidirectional Surveillance Video[C]//Proceedings of the 8th international workshop on Multimedia information. Tempe, AZ: [s.n.], 2002: 18-27.
  • 7Mituyosi T, Yagi Y, Yachida M. Real-time human feature acquisition and human tracking by omni-directional image sensor[C] // Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI2003, July 30-Aug I, 2003: 258-263.
  • 8BASSO K, ZINGANO P R A. Interpolation of Scattered Data: Investigating Alternative for the Modified Shepard Method[C]// Proceedings. XII Brazilian Symposium on Computer Graphics and Image Processing, 1999, Campinas, Brazil, Oct 17 -20, 1999: 39-47.
  • 9LOWE D G.Object recognition from local scale-invariant features[C] //Proceedings of the International Conference on Computer Vision.Corfu,Greece,1999:1150-1157.
  • 10MIKOLAJCZYK K,SCHMID C.Scale and affine invariant interest point detectors[J].Intl J Computer Vision,2004,1(60):63-86.

共引文献34

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部