期刊文献+

基于DEM纹理特征的月貌自动识别方法探究 被引量:11

A Method for Identifying the Lunar Morphology Based on Texture from DEMs
原文传递
导出
摘要 月海和月陆是两种最主要的月貌单元,对于月海及月陆快速准确地识别是进行各项月球研究的重要基础。目前,月海和月陆的识别大多采用DEM结合其派生地形因子建立指标体系的方法。这种方法虽然可在宏观尺度对月海和月陆进行识别和提取,但仍存在2个问题:(1)可扩展性差,不同地区难以共用同一套地形因子构建指标体系;(2)指标体系中各因子权重设置具有较大的主观性。针对以上问题,本文以"嫦娥一号"探测器获取的全月球DEM数据,从月表地形纹理特征的角度出发,提出一种以月表DEM数据识别月海、月陆的自动快速的方法。首先,利用灰度共生矩阵模型,以DEM数据为基础,实现对典型月海、月陆地形纹理特征的量化,然后,对量化指标的筛选,构建能有效区分两类月表形貌单元的特征向量。在此基础上,选用离差平方和作为识别器,最终实现对月海和月陆的自动识别。本文识别方法的整体识别率达到85.7%;综上可知,该方法既能克服原有方法中因子权重设置的主观性,又具有较好的通用性。 The mare and lunar highland are two major types of lunar morphology. The rapid and reliable identifi-cation of these two kinds of lunar morphology is an important basis in lunar research. Currently, major methods for identifying the mare and highland are based on the integrated evaluation index system, which is usually com-bined with the land surface parameters derived from DEM. Although the mare and highland can be identified by this method, it contains two problems yet. One is the lack of extensibility, because it is difficult for different re-gions of lunar to share one index system based on the same terrain factors. The other is the significant subjectivi-ty in weight setting for each factor in the index system. To overcome the problems mentioned above, a new meth-od considering the terrain texture features from lunar DEM is proposed by using the 500 m lunar DEM, which is produced from the global moon data obtained by Chinese satellite Chang’E-1(CE-1).Six typical mare sample ar-eas and six typical highland sample areas were selected as the training zones. To construct the different terrain texture eigenvectors between the mare and highland, principal component analysis (PCA) was used to extract the main composition factors after the execution of quantitative analysis based on Gray level co-occurrence matrix (GLCM) model. Then the area located on 40° E-120° W, 0°-30° S was selected as the test area and the same ap-proach in constructing terrain texture eigenvectors was used in this area. At last, supervised classification method was taken to identify those two types of lunar morphology. The recognition rate was about 85.7%. According to the comparative results between the new method and the traditional manual visual interpretation with Chang’E-1 (CE-1) remote sensing image (in 120 m resolution),the proposed method is more effective and precise in identify-ing the mare and highland. Meanwhile, this method is driven by objective data, which spontaneously overcomes the subjectivity deficiency of current methods. Furthermore, this research provides a new thinking strategy of identifying and extracting different geomorphology based on the texture features from DEMs.
出处 《地球信息科学学报》 CSCD 北大核心 2015年第1期45-53,共9页 Journal of Geo-information Science
基金 国家自然科学基金项目(41171320) 江苏省高校自然科学基金重大项目(13KJA170001) 江苏省研究生科研创新计划项目(KYLX_0701)
关键词 月貌识别 DEM 纹理 灰度共生矩阵 Lunar morphology identification DEM terrain texture gray level co-occurrence matrix
  • 相关文献

参考文献21

  • 1欧阳自远.月球地质学[J].地球科学进展,1994,9(2):80-81. 被引量:15
  • 2欧阳自远,李春来,等.深空探测的进展与我国深空探测的发展战略[J].中国航天,2002(12):28-32. 被引量:49
  • 3李春来,刘建军,任鑫,牟伶俐,邹永廖,张洪波,吕昌,刘建忠,左维,苏彦,温卫斌,边伟,赵葆常,杨建峰,邹小端,汪敏,许春,孔德庆,王晓倩,王芳,耿良,张舟斌,郑磊,朱新颖,李俊铎,欧阳自远.嫦娥一号图像数据处理与全月球影像制图[J].中国科学(D辑),2010,40(3):294-306. 被引量:48
  • 4Chabot N L, Hoppa G V, Strom R G. Analysis of lunar lin- eaments: Far side and polar mapping[J]. Icarus, 2000,147 (1):301-308.
  • 5Morota T, Furumoto M. Asymmetrical distribution of rayed craters on the Moon[J]. Earth and Planetary Sci- ence Letters, 2003,206(3-4):315-323.
  • 6Urbach E R, Stepinski T F. Automatic detection of sub- km craters in high resolution planetary images[J]. Plane- tary and Space Science, 2009,57(7):880-887.
  • 7王杰,曾佐勋,岳宗玉,胡烨.月球主要构造特征:嫦娥一号月球影像初步研究[J].空间科学学报,2011,31(4):482-491. 被引量:12
  • 8Tanaka K L, Moore H J. The Venus geologic mappers' handbook[M]. Washington DC:US Department of the In- terior, US Geological Survey, 1994:25-35.
  • 9Wilhelms D E. Planetary Mapping[M]. Cambridge:Cam- bridge University Press, 1990:209-260.
  • 10Bue B D, Stepinski T F. Automated classification of land- forms on Mars[J]. Computers & Geosciences, 2006,32(5): 604-614.

二级参考文献132

共引文献872

同被引文献245

引证文献11

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部