摘要
Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipitation/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs(benzene, toluene and ethyl acetate) were examined. The Mn-Ce oxalate precursor was obtained from metal salt and oxalic acid without any additives. The resulting materials were characterized by X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET), scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), hydrogen temperature programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS). Compared with Mn-Ce composite oxide synthesized through a traditional method(Na2CO3 route), the hierarchical layer-stacking Mn-Ce composite oxide exhibited higher catalytic activity in the complete oxidation of volatile organic compounds(VOCs). By means of testing, the data revealed that the hierarchical layer-stacking Mn-Ce composite oxide possessed superior physiochemical properties such as good low-temperature reducibility, high manganese oxidation state and rich adsorbed surface oxygen species which resulted in the enhancement of catalytic abilities.
Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipitation/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs(benzene, toluene and ethyl acetate) were examined. The Mn-Ce oxalate precursor was obtained from metal salt and oxalic acid without any additives. The resulting materials were characterized by X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET), scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), hydrogen temperature programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS). Compared with Mn-Ce composite oxide synthesized through a traditional method(Na2CO3 route), the hierarchical layer-stacking Mn-Ce composite oxide exhibited higher catalytic activity in the complete oxidation of volatile organic compounds(VOCs). By means of testing, the data revealed that the hierarchical layer-stacking Mn-Ce composite oxide possessed superior physiochemical properties such as good low-temperature reducibility, high manganese oxidation state and rich adsorbed surface oxygen species which resulted in the enhancement of catalytic abilities.
基金
supported by Strategic Project of Science and Technology of Chinese Academy of Sciences(XDB05050000)
the National Natural Science Foundation of China(51272253)