期刊文献+

低温阳极键合工艺研究 被引量:1

Effect of silicon wafer surface treatment on anodic bonding at low temperature
下载PDF
导出
摘要 对低温阳极键合特性进行了研究。通过对硅片进行亲水、疏水和表面未处理3种不同处理方式研究其对键合的影响,键合前将硅片浸入去离子水(DIW)中不同时间,研究硅表面H基和氧化硅分子数量对键合的影响。结果表明经亲水处理的硅片在水中浸泡1 h的键合效果最佳。并设计了不同烘烤时间下的阳极键合实验,表明在100°C下烘烤30 min可以有效减少气泡的数量和尺寸。由不同工艺条件下得到的键合形貌可知,通过控制硅片表面微观状态可以达到减小或消除键合气泡的目的。 The characteristics of anodic bonding at low temperature are researched. The effects onbonding for three different processing modes of silicon, including hydrophilic treatment, hydrophobictreatment and no surface treatment, are studied. The silicon wafers are dipped into Deionized Water(DIW)for different times to investigate the effect of the number of H-terminations and SiO2 molecules on siliconsurface for bonding. The results show that the best bond quality is achieved by dropping the silicon waferwith hydrophilic treatment in DIW for 1 h. Anodic bonding experiments at different drying time aredesigned. The bubble amount and size will decrease at 100 °C after drying for 30 min. According to theresults of bonding morphology obtained by different processing conditions, the bubbles can be minimizedor eliminated through controlling the microscopic state on silicon surface.
出处 《太赫兹科学与电子信息学报》 2014年第6期922-926,共5页 Journal of Terahertz Science and Electronic Information Technology
基金 中国工程物理研究院超精密加工技术重点实验室资助项目(2012CJMZZ00006)
关键词 阳极键合 低温 亲水 疏水 气泡 anodic bonding low temperature hydrophilic hydrophobic bubbles
  • 相关文献

参考文献10

  • 1Wallis G D,Pomerantz D I. Field assisted glass-metal sealing[J]. J. App. Phys. 1969,40(10):3946-3948.
  • 2Rogers T,Kowal J. Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitivesensors[J]. Sensors and Actuators A, 1995,A46(1-3):113-120.
  • 3Cheng Y T,Lin L,Najafi K. A hermetic glass-silicon package formed using localized aluminum/silicon-glass bonding[J]. J.Micro electromech. Syst., 2001,10(3):392-399.
  • 4Marquardt K,Hahn R,Blechert M,et al. Development of near hermetic silicon/glass cavities for packaging of integratedlithium micro batteries[J]. Microsystem Technologies, 2010,16(7):1119-1129.
  • 5Chung G S,Kim J M. Anodic bonding characteristics of MLCA/Si-wafer using a sputtered Pyrex #7740 glass layer forMEMS applications[J]. Sensors and Actuators, 2004,A116:352-356.
  • 6崔博华,王成,郑英彬.太赫兹MEMS滤波器性能影响因素[J].太赫兹科学与电子信息学报,2013,11(2):319-322. 被引量:7
  • 7Lee B,Seok S,Chun K J. A study on wafer level vacuum packaging for MEMS devices[J]. Journal of Micromechanics andMicroengineering, 2003,13(5):663-669.
  • 8Tong Q Y,Lee T H,G.sele U,et al. Role of surface chemistry in bonding of standard silicon wafers[J]. Journal of theElectrochemical Society, 1997,144 (1):384-389.
  • 9Tong Q Y,Gosele U. A model of Low-temperature wafer bonding and its applications[J]. Journal of the ElectrochemicalSociety, 1996,143(5):1773-1779.
  • 10Gosálvez M A,Tang B,Pal P,et al. Orientation- and concentration-dependent surfactant adsorption on silicon in aqueousalkaline solution: explaining the changes in the etch rate, roughness and undercutting for MEMS applications[J]. Journalof Micromechanics and Microengineering, 2009,19:125011.

二级参考文献8

  • 1张东梅,丁桂甫,汪红,姜政,姚锦元.MEMS器件气密性封装的低温共晶键合工艺研究[J].传感器与微系统,2006,25(1):82-84. 被引量:8
  • 2Nagatsuma T,Hirata A. 10 Gbit/s wireless link technology using the 120 GHz band[J].NTT Technical Review,2004,(11):58-62.
  • 3Yamaguchi R,Hirata A,Kosugi T. 10 Gbit/s MMIC wireless link exceeding 800 meters[A].Florida,Jap,2008.695-698.
  • 4Miles R E,Zhang X C,Eisele H. Terahertz Frequency Detection and Identification of Materials and Objects[M].Spiez,Switzerland:Springer,2007.
  • 5Crowe T W. Multiplier technology for terahertz applications[A].Leeds,1998.58-61.
  • 6Fitch M J,Osiander R. Terahertz waves communications and sensing[J].{H}Johns Hopkins APL Technical Digest,2004,(04):348-355.
  • 7郭开周.行波管物理及理论问题[M]{H}北京:电子工业出版社,2011.
  • 8郑英彬,施志贵,席仕伟,赵龙,李红,赵兴海.MEMS THz滤波器的制作工艺[J].微纳电子技术,2011,48(6):399-402. 被引量:3

共引文献6

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部