期刊文献+

一类带跳的随机微分方程解的Harnack不等式

Harnack Inequality for the Solution of a Class of Stochastic Differential Equations with Jumps
下载PDF
导出
摘要 针对一类带泊松跳的随机微分方程,在一些合理的条件假设下研究了该类方程解的半群11():[()]x t t tP f x E f X I≤的Harnack不等式和Log-Harnack不等式问题.首先建立了两类半群之间的关系,同时使用耦合方法,结合Girsanov定理、H?lder不等式、Young不等式以及Ito公式,先后获得了Harnack和Log-Harnack的2种不等式. In this paper, we study a class of stochastic differential equations with Poission jumps. Under some reasonable conditions, we deal with the issue of the Harnack inequalities and the Log-Harnack inequalities for the semigroup Pt^1f(x):E[f(Xt^x)Iτ1≤t] of the solutions of such equations. We establish the relationship between the two kinds of semigroup. We also obtain two inequalities such as Hamack and Log-Hamack using the coupling argument, along with Girsanov theorem, Holder inequality, Young inequality and Ito formula.
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2015年第1期70-75,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(60874088 11101441) 浙江省自然科学基金(LY12F03010 LQ13A010020) 宁波大学王宽诚基金 高等学校博士学科点新教师基金(20100171120041)
关键词 耦合 HARNACK不等式 测度变换 泊松点过程 coupling Harnack inequality the change of measure poisson point process
  • 相关文献

参考文献10

  • 1Wang Fengyu. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds[J]. Probability Theorey and Related Fleds, 1997, 109(3): 417-424.
  • 2Amaudom M, Thalmaier A, Wang Fengyu. Harnackinequality and heat kernel estimates on manifolds with curvature unbounded below[J]. Bulletin des Sciences Math6matiques, 2006, 130(3):223-233.
  • 3Wang Fengyu, Yuan Ciguang. Harnack inequality and applications for stochastic differential equations with jumps[J]. 2008, Available at arXiv:0801,2668.
  • 4Wang Fengyu Yuan Ciguang. Harnack inequalities for functional SDEs with multiplicative noise and applica- tions[J]. Appl Stochastic Process, 2011, 121(11):2692- 2710.
  • 5Wang Fengyu. Hamack inequality for SDE with multiplicative noise and extension to Neumann semi- group on noncompact Riemannian manifolds[J]. The Annals of probability, 2011, 39(4): 1449-1467.
  • 6Wang Fengyu. Coupling for Ornstein-Uhlenbeck processwith jumps[J]. Brenoulli, 2011, 17(4): 1136-1158,.
  • 7Wang Fengyu, Wang Jian. coupling and strong feller for jump process on banach space[J]. Probability Theorey and Related Fleds, 2013, 123(5):1588- 1615.
  • 8Krystul J. Modeling of stochastic hybird systems with applications to accident risk assessment[M]. Netherland: W6hrmann Printing Service, 2006:56-68.
  • 9RongSitu.Theoreyofstochasticdifferentialwithjumpsandapplications[M].北京:世界图书出版公司北京公司,2012:96.
  • 10Wang Fengyu. Harnack inequalities on manifolds with boundary and applications[J]. J Math Pures Appl, 2010, 94(3):304-321.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部