期刊文献+

基于障碍约束的空间聚类算法综述 被引量:1

Survey of Spatial Clustering Algorithm with Obstacle Constrains
下载PDF
导出
摘要 传统的空间聚类算法解决的是未带障碍约束的空间数据聚类问题,而现实的地理空间中经常会存在河流、山脉等阻碍物,因此,传统空间聚类算法不适用于带障碍数据约束的现实空间.在解析了带障碍空间聚类相关概念和定义的前提下,对带障碍约束条件的空间聚类算法进行梳理,给出了这类算法的研究历史和沿袭关系,并把这类算法按七个维度分为四大类,分析了每类的技术优缺点,最后给出了带障碍约束的空间聚类算法的未来研究趋向. Classical algorithms of spatial clustering are performed in optimal data space without any obstacle. But many obstacle constrains exist in the real-world, such as rivers, mountains, etc. They may affect results of clustering substantially. In this paper, the knowledge of spatial clustering algorithm with obstacle constrains is illustrated in brief. And then, research history and inheritance relation of the algorithms is given. These algorithms are divided into four categories from seven respects. At last, technical feature of every category and trend of spatial clustering algorithm in the presence of obstacles are analyzed.
作者 余冬梅
出处 《计算机系统应用》 2015年第1期9-13,共5页 Computer Systems & Applications
基金 陕西省教育厅科学研究计划(自然科学专项)(14JK1132) 陕西省科学技术研究发展计划(2014KJXX-75) 汉中市科技发展专项(2013hzzx-38)
关键词 空间聚类 障碍约束 分类 障碍距离 聚类算法 spatial clustering obstacle constrain category obstacle distance clustering algorithm
  • 相关文献

参考文献22

  • 1Tung AKH, Hou J, Han J. Spatial clustering in the presence of obstacles. Proc. of Int. Conf. on Data Engineering (ICDE 01). Heidelberg, Germany. 2001. 359-367.
  • 2Ng R, Han J. Efficient and effective clustering method for spatial data mining. Proc. of International Conference on Very Large Data Bases(VLDB'94). Santiago, Chile. 1994. 144-155.
  • 3卢炎生,娄强.障碍空间里基于密度的快速聚类算法[J].小型微型计算机系统,2007,28(11):1976-1980. 被引量:4
  • 4Estivill-CastroV, Lee IJ. Autoclust+: Automatic clustering of point-data sets in the presence of obstacles. Proe. of the International Workshop on Temporal Spatial and Spatial-Temporal Data Mining. Lyon, France, 2000.133-146.
  • 5Zaiane OR, Lee CH. Clustering spatial data when facing physical constraints. Proe. of the IEEE International Conference on Data Mining. Maebashi City, Japan. 2002. 737-740.
  • 6Ester M, Kriegel HP, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. of International Conference on Knowledge Discovery and Data Mining. 1996. 226-231.
  • 7王媛妮,边馥苓.基于演化算法的带故障约束空间聚类分析[J].计算机科学,2009,36(12):197-198. 被引量:3
  • 8Zhang XP, Wang JY, Wu F, et al. A novel spatial clustering with obstacles constraints based on genetic algorithms and K-medoids. Proc. of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA2006). Jinan, China. 2006, 1. 605-610.
  • 9Zhang XP, Wang JY, Fan ZS, Li B. Spatial clustering with obstacles constraints using ant colony and particle swarm optimization. Lecture Notes in Computer Science, 2007, 4819: 344-356.
  • 10Wang X, Rostoker C, Hamilton HJ. Density-based spatial clustering in the presence of obstacles and facilitators. ftp://cs.uregina.ca/Research/Techreports/2004-08.pdf. 2004.

二级参考文献89

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2李庆华,戴光明,弓晨.基于演化计算的最短避障路径算法设计[J].小型微型计算机系统,2005,26(3):340-343. 被引量:2
  • 3ZHOU Jiaogen GUAN Jihong LI Pingxiang.DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases[J].Geo-Spatial Information Science,2007,10(2):137-144. 被引量:15
  • 4Tung AKH, Hou J, Han J. Spatial clustering in the presence of obstacles[A]//Proceeding of International Conference on Data Engineering[C]. Heidelberg: IEEE Computer Society, 2001 : 359- 367.
  • 5Estivill - Castro V, Lee I J. AUTOCLUST+ : Automatic clus - tering of point-data sets in the presence of obstacles[A]//Proceeding of International Workshop on Temporal, Spatial and Spatial temporal Data Mining [C]. Berlin: Springer-Verlag, 2000:133-146.
  • 6Zaiane O R, Lee C H. Clustering spatial data when facing physical constraints [A]//Proceeding of the IEEE International Conference on DataMining[C]. Los Alamitos: IEEE Computer Society, 2002: 737-740.
  • 7Wang X, Rostoker C, Hamilton H J. Density-based spatial clustering in the presence of obstacles and facilitators[A]//Proceeding of the 8th European International Conference on Principles and Practice of Knowledge Discovery in Databases [C]. Berlin: Springer-Verlag, 2004 : 446-458.
  • 8[1]Tung AKH, Hou J, Han J. Spatial Clustering in the Presence of Obstacles[A]. Conf on Data Engineering (ICDE'01)[C].Kyoto,2001.
  • 9[2]Tung AKH, Hou J, Han J. COE: Clustering with Obstacles Entities, A Preliminary Study[A]. Proc 2000 Pacific-Asia Conf on Knowledge Discovery and Data Mining (PAKDD'00)[C].Kyoto,Japan, April 2000.
  • 10[3]Han J, Kamber M.Data Mining Concepts and Techniques[M]. Beijing:China Machine Press, 2001.

共引文献45

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部