期刊文献+

弱联接玻色爱因斯坦凝聚体中势垒宽度对非线性耦合及其动力学的影响

The Effect of the Barrier Width on the Nonlinear Coupling and Dynamics of Weakly Coupling Bose-Einstein Condensates
下载PDF
导出
摘要 利用解析与数值方法,对处于对称双势阱中的玻色爱因斯坦凝聚体中,势垒宽度对系统非线性耦合及其动力学的影响进行了研究.研究发现当势垒宽度较大时,系统的线性耦合强度可迅速减小;在势垒宽度大于0.3且非线性强度较大时,线性耦合强度远小于非线性耦合项,此时玻色约瑟夫森结模型的动力学特性由非线性耦合强度来决定.同时对势垒宽度对BEC约瑟夫森振荡的周期和发生宏观量子自俘获时的非线性临界值进行了详细的研究. By using analytical and numerical methods,the effects of barrier width on the strength of nonlinear coupling and the dynamics of Bose-Einstein Condensates with symmetrical double square well were investigated.The results show that the linear coupling could be very small once the barrier width is large.When the width is larger than 0.3 and nonlinear parameters larger,the linear coupling can be safely neglected.In this case,the dynamics character of Bose-Jsoephson model is determined only by nonlinear coupling strength.Furthermore,the effects of this width on the period of the nonlinear Josephson oscillation and the nonlinear threshold value in macroscopic quantum self-trapping were presented in details.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2014年第3期53-57,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(11374197 11074155 10934004)
关键词 对称双方势阱 双模近似 玻色约瑟夫森结 宏观量子自俘获 symmetric double square well potential two mode approximation Bose-Josephson junction macroscopic quantum self-trapping
  • 相关文献

参考文献11

  • 1SMERZI A, FANTONI S,GIOVANAZZI S,et al. Quantum coherent atomic tunnneling between two trapped Bose-Einstein con-densates [J]. Phys Rev Lett, 1998,79(25) :49504953.
  • 2RAGHAVAN S, SMERZI A, FANTONI S, et aL Transitions in coherent oscillations between two trapped Bose-Einstein conden-sates[ J]. Phys Rev A, 1999,60(3) :620-624.
  • 3THIAGO F VOSCONDI, FURUYA K. Dynamics of a Bose-Einstein condensate in a symmetric triple-well trap[ J] . J Phys A:Math Theor, 2011,44(17) : 175301-175303.
  • 4MAHMUD K W,KUTZ J N,REINHARDT W P. Bose-Einstein condensates in a one-dimensional double square well; Analyti-cal solutions of the nonlinear Schrodinger equation[ J]. Phys Rev A, 2002,66(6) :063607.
  • 5LIN B, FU L B, YANG S P, et aL Josephson oscillation and transition to self-trapping for Bose- Einstein condensates in a tri-pie-well trap[ J]. Phys Rev A,2007,75(3) :033601.
  • 6CHENG J, JING H,YAN Y J. Spin-mixing dynamics in a spin-1 atomic condensate coupled with a molecular[ J] . Phys Rev A,2008,77(R) (6) :061604.
  • 7LI W D. Stationary solutions of Gross-Pitaevskii equations in a double square well[ J] . Phys Rev A, 2006,74(6) :063612.
  • 8JIA X Y, LI W D, LIANG J Q. Nonliner correction to the boson Josephson-junction model[ J]. Phys Rev A, 2008 ,78 (2):023613.
  • 9XIE Q T, HAI W H. Coherent control of self-trapping of two weakly coupled Bose-Einstein condensates [ J]. Phys Rev A,2007,75(1) :015603.
  • 10MAHMUD K W, PENG H, REINHARDT W P. Quantum phase-space picture of Bose-Einstein condensates in a double well[J]. Phys Rev A, 2005,71(2) :023615.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部