期刊文献+

基于概率主题模型的社交网络层次化社区发现算法 被引量:5

Hierarchical Community Discovery for Social Networks Based on Probabilistic Topic Model
下载PDF
导出
摘要 针对传统的社区发现算法大多基于网络拓扑结构寻找独立的社区结构,忽略了用户兴趣属性,并且不能有效地发现社区间的相关性和层次关系等问题。该文提出一种新型的基于PAM(pachinko allocation model)概率主题模型的层次化网络社区发现算法,综合考虑了用户的兴趣和用户的社交网络关系,在同一模型平台上实现层次化的社区结构发现和用户兴趣挖掘,并捕捉和揭示社区之间的关联性和重叠性等特征。模型采用Gibbs采样方法进行参数推导。在真实数据集上的实验结果验证了所提出算法的可行性和有效性。 The traditional community discovery algorithms are generally based on the link structure of a given social network, they lack of consideration of user’s interests and the hierarchical structure of community. In this paper, a novel PAM (Pachinko Allocation Model) probabilistic generative model is proposed to detect latent hierarchical communities based on the user interests and their social relationships. The joint model of topic modeling and community discovery can capture the correlation among multiple communities and their hierarchical structure. Experiments on real-world dataset have confirmed the feasibility and effectiveness of the proposed algorithm.
作者 毕娟 秦志光
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第6期898-903,共6页 Journal of University of Electronic Science and Technology of China
基金 国家高技术研究发展计划(2011AA010706) 国家自然科学基金(61133016)
关键词 层次化社区发现 LDA 概率生成模型 社交网络 hierarchical community discovery LDA probabilistic generative model social network
  • 相关文献

参考文献19

  • 1WASSERMAN S. Social network analysis: methods andapplications[M]. Oxford: Cambridge university press, 1994,23-34.
  • 2BLEI, DAVID, ANDREW Y’ MICHAEL J. Latent dirichletaIlocation[J]. The Journal of machine Learning research,2003, 10(6): 993-1022.
  • 3KERNIGHAN B W, LIN S. An efficient heuristic procedurefor partitioning grohs[J]. Bell System Technical Journal,1970,11(2):291-307.
  • 4POTHEN A, SIMON H D, LIOU K P. Partitioning sparsematrices with eigenvectors of graphs[J]. SIAM Journal onMatrix Analysis and Applications, 1990,11(3): 430-452.
  • 5NEWMAN M E J, GIRVAN M. Finding and evaluatingcommunity structure in networks[J]. Physical Review E,2004,69(20): 26-31.
  • 6BLONDEL V D,GUILLAUME J L, LAMBIOTTE R. Fastunfolding of communities in large networks[J]. Journal ofStatistical Mechanics: Theoiy and Experiment, 2008,10(3):108-120.
  • 7LI W,MCCALLUM A. Pachinko allocation: DAG-structured mixture models of topic correlations[C]//Proceedings of the 23 rd International Conference onMachine Learning. Pittsburgh, USA: ACM, 2006: 577-584.
  • 8MAO X L,MING Z Y, CHUA T S,et al. SSHLDA: asemi-supervised hierarchical topic model[C]//Proceedings ofthe 2012 Joint Conference on Empirical Methods in NaturalLanguage Processing and Computational Natural LanguageLearning. Association for Computational Linguistics.Pennsylvania: ACM, 2012: 800-809.
  • 9WANG X,MOHANTY N, MCCALLUM A. Group andtopic discovery from relations and their attributes[J].Advances in Neural Information Processing System, 2006,18(1): 14-29.
  • 10ZHOU D,MANAVOGLU E,LI J. Probabilistic models fordiscovering e-communities[C]//Proceedings of the 15thInternational Conference on World Wide Web. New York;ACM, 2006: 173-182.

同被引文献35

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部