摘要
为克服误差逆向传播算法的多层前馈型BP神经网络收敛速度慢、局部极小化问题,提出用遗传算法(GA)的全局搜索能力寻求最优的BP神经网络权值和阀值,以提高神经网络的收敛速度和克服局部最优。以磁流变液压悬置动态特性试验结果为数据样本,分别用未优化的BP神经网络和优化后的GA-BP神经网络对磁流变液压悬置正、逆模型进行辨识。结果表明,相对于BP神经网络,GA-BP神经网络具有更高的辨识精度、更快的收敛速度,在磁流变液压悬置数学模型辨识方面具备更优的性能。
Initial weights and thresholds of BP neural network are optimized by using Genetic Algorithm(GA) method to solve its slow convergence speed and local optimum. The defect of BP neural network is thus overcome by the proposed method. The direct and inverse dynamic models for a prototype of Magneto-rheological (MR) mount are identified by using traditional BP neural network and novel GA-BP neural network. The results show that the GA-BP neural network has faster convergence rate and higher precision compared with the traditional BP neural network in the identification of direct and inverse model for MR mount.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2014年第6期955-960,共6页
Journal of University of Electronic Science and Technology of China
基金
中央高校基本科研业务费(CDJZR13280074)
关键词
BP神经网络
遗传算法
磁流变悬置
模型辨识
BP neural network
genetic algorithm
magneto-rheological mount
model identification