期刊文献+

数理逻辑中主范式的存在性

The existence of principal normal form in mathematical logic
下载PDF
导出
摘要 数理逻辑中关于析取范式与合取范式的求法有两种,一种是利用真值表直接写出,另一种利用命题公式的等值演算得出.使用数学归纳法,从归纳于逻辑联结词的个数和归纳于命题的个数两个方面,给出了析取范式与合取范式的存在性证明. In order to solve the disjunctive normal form and conjunctive normal form in mathematical logic,the first way is to use the truth table directly,and the other way is to equivalent calculation of propositional formula.By using of mathematical induction,gave the existence proof of disjunctive normal form and conjunctive normal form from those two aspects respectively,the number of connectives induction and the number of proposition induction.
作者 张亚江
出处 《高师理科学刊》 2014年第6期26-28,共3页 Journal of Science of Teachers'College and University
关键词 逻辑联结词 析取范式 合取范式 logical connectives disjunctive normal form conjunctive normal form
  • 相关文献

参考文献4

二级参考文献13

  • 1Skowron A, Rauszer C.The discembility matrices and functions in information systems[M].Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory.The Netherlands: Kluwer, 1992: 331-362.
  • 2Skowron A.Boolean reasoning for decision rules generation[C]// 7th International Symposium on Methodologies for Intelligence Systems, 1993 : 295-305.
  • 3Pearce D.A new logical characterization of stable models and answer sets[J].LNCS 1216: In Non-Monotonic Extensions of Logic Programming, 1997: 57-70.
  • 4Smelting G.Reengineering of configuration based on mathematicalconcept analysis[J].ACM Transactions on Software Engineering and Methodology, 1996,5(2) : 146-189.
  • 5Bell J L, Machovr M. A Course in Mathematical Logic[M]. North-Holland Publishing Company, 1977.
  • 6Ebbinhaus H D, Flum J, Thomas W. Mathematical Logic[M]. Springer-Verlag, 1984.
  • 7吴从炘,王长忠.基于广义粗糙集的属性约简[J].黑龙江大学自然科学学报,2008,25(6):802-806. 被引量:3
  • 8智东杰,智慧来,刘宗田.概念格的内涵缩减研究[J].计算机工程与应用,2009,45(1):42-44. 被引量:8
  • 9刘高峰,牟廉明,代锡彬.合取范式化为析取范式的DNA表面计算[J].内江师范学院学报,2009,24(6):14-16. 被引量:2
  • 10张德栋,李仁璞,赵永升.一种高效的分辨函数范式转换算法[J].计算机应用研究,2010,27(3):879-882. 被引量:7

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部