期刊文献+

聚类分析在大学生心理健康管理中的应用 被引量:10

Application Research on Psychological Health Management of University Students Using Cluster Analysis
下载PDF
导出
摘要 近年来,大学生心理健康教育逐渐为教育主管部门所重视,大部分高校都设立了心理咨询指导中心,使用心理管理系统进行学生的心理测量、统计和建档。尽管这些传统的方法取得了一定的成效,但不能客观全面地反映学生的心理健康状态,实现防患于未然的预警作用。本文使用聚类分析方法对学生档案数据进行分析,以有效克服常规心理测量、人工普查等传统方法的单一性和主观性。实验结果表明,提出的方法具有较高的准确率和稳定性,能为高校大学生心理健康教育与管理提供有效的管理手段。 In recent years, the educational departments have gradually paid much attention to the psy-chological health education of university students. Most universities have set up psychological counse-ling centers and management system to conduct psychological measurement, statistical analysis anddata filing. Although these traditional methods have made some progress, they neither reflect the psy-chological health status of students objectively and comprehensively, nor can the methods achieve thefunction of early warning to psychological problems. This paper used cluster analysis of data mining toanalyze the student file information data, which could effectively overcome the defects of psychologicalmeasurement, artificial census and other traditional methods which might be of unity and subjectivity.Experimental result showed that k-means cluster had high accuracy and stability and could provide agood theoretical basis for university students psychological health education and management.
出处 《湖北工程学院学报》 2014年第6期53-57,共5页 Journal of Hubei Engineering University
基金 湖北省自然科学基金项目(2014CFB576)
关键词 数据挖掘 聚类分析 K-MEANS算法 主动防御 data mining clustering analysis k -means algorithm active defense
  • 相关文献

参考文献8

二级参考文献29

  • 1程光,龚俭,丁伟.网络测量及行为学研究综述[J].计算机工程与应用,2004,40(27):1-8. 被引量:14
  • 2缪红保,李卫.基于数据挖掘的用户安全行为分析[J].计算机应用研究,2005,22(2):105-107. 被引量:11
  • 3[3]Julie Dugdale.A Fuzzy-Set Theoretical Approach to Asset and Liability Management[J].Fuzzy Sets and Systems,1978(1):46-54.
  • 4Tan Pang-Ning,Steinbach M,Kuma V.Introduction to DataMining[M].北京:人民邮电出版社,2006:5-28.
  • 5Hand D J,Vinciotti V.Choosing k for two-class nearest neighbor classifiers with unbalance classes[J].Pattern Recognition Letter,2003,24(9):1555-1562.
  • 6Cuba S,Rastogi R,Shim K.CURE:An efficient clustering algorithm for large databases[C]//In:Hass L M,Tiwary A.Proc.of the ACM SIGMOD Int'1 Conf.on Management of Data.New York:ACM Press,1998:73-84.
  • 7Harmer P K,Williams P D,Gunsch G H.An Artificial Immune System Architecture for Computer Security Applications[J].IEEE Transactions on Evolutionary Computation,2002,6(3):252-280.
  • 8Yang M S,Hu Y J,Lin K C R,et al.Segmenttation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithm[J].Magnetic Resonance Imaging,2002(20):173-179.
  • 9Zhaohui Tang,Jamie M.数据挖掘原理与应用-SQL Server2005数据库[M].北京:清华大学出版社,2007:72-93.
  • 10Han Jiawei, Micheline Kamber. Data mining concepts and techniques[M].北京:机械工业出版社,2006.

共引文献299

同被引文献86

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部