期刊文献+

短语及其自动识别研究评述 被引量:8

下载PDF
导出
摘要 短语是具有统计意义的词语共现,它包括固定词组、准固定词组和半自由词组。短语自动识别是短语学研究的基本问题之一,是连接短语学理论和实践的桥梁。本文阐述了三种基于统计的短语自动识别方法,并指出,英语短语自动识别虽存缺陷,但其总体适应性较好,汉语短语自动识别由于汉语自身的特点而更具复杂性。文章具体分析了汉语短语自动识别存在的主要问题,并提出了解决相关问题的初步方案。
作者 李德俊
出处 《外语研究》 CSSCI 北大核心 2014年第6期8-13,共6页 Foreign Languages Research
  • 相关文献

参考文献12

  • 1符淮青.现代汉语词汇[M].北京:北京大学出版社,2005(8).
  • 2梁茂成,刘霞.语篇内部的短语学特征分布模式探索——以学术论文为例[J].解放军外国语学院学报,2014,37(4):1-11. 被引量:15
  • 3邢富坤.多词单位的描写识别与词典编纂[J].当代语言学,2012,14(4):407-417. 被引量:3
  • 4徐海.短语学与英语短语的词典收录及编排[J].辞书研究,2013(5):46-52. 被引量:8
  • 5周荐.20世纪中国词汇学[M].北京:中国人民大学出版社,2007.
  • 6Altenberg, B. 1991. Amplifier collocations in spoken English [C] // Johansson & Stenstrom. English Computer Corpora: Selected Papers and Research Guide. Berlin: Mouton de Gruyter: 127 - 147.
  • 7Cowie, A. P. 1998. Phraseology: Theory, Analysis, and Applications [M]. Oxford: Oxford University Press.
  • 8Gries, S. Th. 2008. Phraseology and linguistic theory: A brief survey [C] // S. Granger & F. Meunier. Phraseology : An Interdisciplinary Perspective. Amsterdam and Philadelphia: John Benjamins Publishing Company: 3 - 25.
  • 9Hoey, M. 2005. Lexical Priming: A New Theory of Words and Language [M]. London and New York: Routledge.
  • 10Hunston, S. 2011. Corpus Approaches to Evaluation: Phraseology and Evaluative Language [ M ]. New York : Routledge.

二级参考文献66

  • 1徐海.COBUILD式释义与现代语言学理论[J].广东外语外贸大学学报,2002,13(4):31-35. 被引量:2
  • 2Bannard, C. , T. Baldwin, and A. L ascarides. 2003. A statistical approach to the semantics of verb-particles. Proceedings of the ACL 2003 Workshop on Mtdtiword Expressions: Analy- sis, Acquisition and Treatment. Pp. 65-72.
  • 3Caseli, H.M., A. Villavicencio, A. Machado, and M.J. Finatto. 2009. Statistically-driven alignment-based muhiword expression identification for technical domains. Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications. Pp. 1 - 8.
  • 4Cook, P. 2006. Classifying particle semantics in English verb-particle constructions. Proceed- ings of the Workshop on Multiword Expressions: Identifying and Exploiting Underlying Properties. Pp. 45 - 53.
  • 5Evert, S. and B. Krenn. 2001. Methods for qualitative evaluation of lexical association meas- ures. Proceedings of the 39th Annual Meeting of the Association of Computational Linguis- tics. Pp. 188 -95.
  • 6Fujita, A., K. Furihata, K. Inui, Y. Matsumoto, and K. Takeuchi. 2004. Paraphrasing of Japanese light-verb constructions based on lexical conceptual structure. Proceedings of Sec- ond ACL Workshop on Multiword Expressions: Integrating Processing. Pp. 9 -16.
  • 7Mukerjee, A., A. Soni, and A.M. Raina. 2006. Detecting complex predicates in Hindi using POS projection across parallel corpora. Proceedings of the Workshop on Multiword Expressions : Identifying arm Exploiting Underlying Properties. Pp. 28 - 35.
  • 8Pearce, D. 2002. A comparative evaluation of collocation extraction techniques. Proceedings of the Third International Conference on Language Resources and Evaluation. Pp. 1530-36.
  • 9Pecina, P. and P. Schlesinger. 2006. Combining association measures for collocation extraction. Proceedings of the 21th International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics (COLING/ACL 2006). Pp. 651 - 8.
  • 10Sag, I.A., T. Baldwin, F. Bond, A.A. Copestake, and D. Flickinger. 2002. Muhiword expressions: A pain in the neck for nlp. Proceedings of the Third International Conference on Computational Linguistics and Intelligent Text Processing. London: Springer. Pp. 1 - 15.

共引文献26

同被引文献76

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部