期刊文献+

厌氧阳极铵根离子透过质子交换膜的特性 被引量:2

Characteristics of Ammonium Ions Penetrating through Proton Exchange Membrane in Anaerobic Anode
下载PDF
导出
摘要 建立双阴极微生物燃料电池产电装置,研究了装置物化作用下对厌氧阳极氨损失的影响。结果表明部分铵根离子能透过质子交换膜。此外,好氧池曝气使阴极附近的局部p H升高使得铵根离子变成易挥发的氨态氮,减小了好氧池、厌氧池的浓度差,削弱了铵根离子透过膜的作用,此时阳极氨氮减少了31%。另一方面,电流强度对铵根离子透过质子交换膜有促进作用。当好氧池、厌氧池、缺氧池全闭合运行2 h时,由于电流产生,阳极氨氮增加值为7.13 mg/L,增加了58%。研究结果对A2/O工艺耦合微生物燃料电池中氨损失的机理探究提供了理论基础。 Double cathode microbial fuel cell was set up, which can produce electricity. Physicochemical effect of electricity device on anaerobic ammonia loss was studied. The results show that part of ammonium ions can penetrate through proton exchange membrane. In addition, the aeration of aerobic tank makes the local pH higher near the cathode. It can reduce the concentration difference of the aerobic tank and the anaerobic tank because of volatilization of ammonia and weakens the effect of ammonium ions through the membrane, the anode ammonia nitrogen decreased by 31%. On the other hand current promote ammonium ions through the proton exchange membrane. When running time is 2 h, due to electricity generation in aerobic tank, anaerobic tank and anoxic tank which is full closed circuit, added concentration of ammonia nitrogen is 7. 13 mg/L, increases by 58%. The research provides data support for the mechanism of ammonia loss of A^2/O process coupling in the microbial fuel cell.
出处 《净水技术》 CAS 2014年第6期62-65,共4页 Water Purification Technology
关键词 双阴极 微生物电池 质子交换膜 物化作用 厌氧阳极 氨损失 double cathode microbial fuel cell proton exchange membrane physicochemical effect anaerobie anode ammonia loss
  • 相关文献

参考文献15

  • 1Logan B E,Hamelers B,Rozendal R A,et al.Microbial fuel cells:methodology and technology[J].Environmental Science and Technology,2006,40(17):5181-5192.
  • 2Kim B,Chang I,Gadd G.Challenges inmicrobial fuel cell development and operation[J].Apply Microbiology Biotechnology,2007,76(3):485-494.
  • 3覃彪,支银芳,周华,周楚新.微生物燃料电池在脱氮方面的研究进展[J].环境科学与技术,2012,35(1):111-114. 被引量:15
  • 4Rotthauwe J-H,Witzel K-P,Liesack W.The ammonia monooxygenase structural gene amo A as a functional marker:Molecular finescale analysis of natural ammonia-oxidizing populations[J].Apply Environment Microbiology,1997,66(12):4704-4712.
  • 5Rozendal R A,Hamelers HVM,Buisman CJN.Effects of membrane cation transport on ph and microbial fuel cell performance[J].Environment Science and Technology,2006,40(17):5206-5211.
  • 6Kim J R,Cheng S,Oh SE,Logan BE.Power generation using differentcation,anion and ultrafiltration membranes in microbial fuel cells[J].Environment Science and Technology,2007,41(3):1004-1009.
  • 7Kim JR,Zuo Y,Regan JM,et al.Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater[J].Biotechnology Bioengineering,2008,99(25):1120-1127.
  • 8Shan Xie,Peng Liang.Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathod microbial fuel cells coupled system[J].Bioresource Technology,2011,102(13):348-354.
  • 9He Z,Wagner N,Minteer SD,et al.An upflow microbial fuel cell with an interior cathode:assessment of the internal resistance by impedance spectroscopy.[J]Environment Science and Technology,2006,40(10):5212-5217.
  • 10国家环境保护局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.

二级参考文献45

  • 1Fu L, You S J, Zhang G Q,et al.Degradation of azo dyes using in-situ Fenton reaction incorporated into H202-pro- ducing microbial fuel cell[J]. Chemical Engineering Journal, 2010,160(1) : 164-169.
  • 2Rozendal R A, Hamelers H V M, Euverink G J W,et al. Principle and perspectives of hydrogen production through biocatalyzed electrolysis[J]. International Journal of Hydro- gen Energy, 2006,31( 12 ) : 1632-1640.
  • 3Cao X X, Huang X, Liang P,et al. A new method for wa- ter desalination using microbial desalination cells [J]. Envi- ronmental Science & Technology, 2009, 43 (18) : 7148- 7152.
  • 4Tender L M, Gray S A, Groveman E, et al. The first demonstration of a microbial fuel cell as a viable power supply :Powering a meteorological buoy[J]. Journal of Pow- er Sources, 2008,179(2) : 571-575.
  • 5Zhang F, Saito T, Cheng S,et al.Microbial fuel cell cath- odes with poly(dimethylsiloxane) diffusion layers construct- ed around stainless steel mesh current collectors[J]. Environ- mental Science & Technology, 2010,44(4) : 1490-1495.
  • 6Wang Z, Lim B, Lu H,et al. Cathodic reduction of Cu^2+ and electric power generation using a microbial fuel cell[J]. Bulletin of the Korean Chemical Society,2010,31 (7): 2025-2030.
  • 7Min B, Kim J R, Oh S E,et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Re- search, 2005, 39(20):4961-4968.
  • 8Kim J R, Zuo Y, Regan J M, et al. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater[J]. Biotechnology and Bioengineering,2008,99 (5):1120-1127.
  • 9He Z, Kan J J, Wang Y B, et al. Electricity production coupled to ammonium in a microbial fuel cell[J]. Environ- mental Science & Technology,2009,43(9):3391-3397.
  • 10Gregory K B, Bond D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbi- ology, 2004,6( 6 ) : 596-604.

共引文献80

同被引文献23

  • 1国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
  • 2CAMARGO JA, ALONSO A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment[J]. Environment International, 2006, 32(6): 831-849.
  • 3KIM Y M, KIM S J, KIM Y S, et al. Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network[J]. Desalination, 2009, 238(1/2/3): 312-332.
  • 4HILAL N, AL-ZOUBI H, DARWISH NA, et al. A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy[J]. Desalination, 2004, 170(3): 281-308.
  • 5LI X Z, ZHAO Q L. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment[J]. Chemosphere, 2001, 44(1): 37-43.
  • 6LOGAN B E. Microbial fuel cells[M]. New York: John Wiley & Sons, 2007.
  • 7SCHMIDT I, SLIEKERS O, SCHMID M, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews, 2003, 27(4): 481-492.
  • 8YOO H, AHN K H, LEE H J, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently aerated reactor[J]. Water Research, 1999, 33(1): 145-154.
  • 9VIRDIS B, READ S T, RABAEY K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode Bernardino[J]. Bioresource Technology, 2011, 102(1): 334-341.
  • 10VIRDIS B, RABAEY K, ROZENDAL R A, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J]. Water Research, 2010, 44(9): 2970-2980.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部