期刊文献+

基于控制K次平方根非门的类Toffoli门构造方法

Realization of Toffoli-Like Gates Using Controlled-Kth-Root-of-NOT Quantum Gates
下载PDF
导出
摘要 在量子电路综合算法中,由于非置换量子门比置换量子门具有更复杂的规则,直接使用非置换量子门会大幅度提高综合算法的复杂性,因此可先使用非置换量子门生成相应的置换量子门,然后再用这些置换量子门综合所求量子可逆逻辑电路,从而提高算法性能。本文重点研究如何用非置换量子门构造新的置换量子门,为此吸收了格雷码的思想,提出了一种高效的递归构造方法,实现使用控制非门和控制K次平方根非门(非置换量子门),快速生成最优的类Toffoli门(置换量子门)。 Since non-permutative quantum gates have more complex rules than permutative quantum gates,direct use of non-permutative quantum gates can greatly increase the complexity of the synthesis algorithm,so given quantum gates should be used to create new permutative quantum gates,and then these permutative gates are used to synthesize the desired quantum reversible logic circuit,thus improving the algorithm performance.This paper focuse on how to use non-permutative quantum gates to construct new permutative gates,therefore,we absorb the idea of Gray code and present an efficient recursive construction which can use controlled-NOT gates and controlled-Kth-root-of-NOT gates(non-permutative quantum gates)to construct the optimal Toffoli-like gates(permutative quantum gates).
出处 《数据采集与处理》 CSCD 北大核心 2014年第6期975-980,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61070240 60572071 61170321)资助项目 江苏省高校自然科学基金(10KJB520021)资助项目
关键词 量子门 量子电路 可逆逻辑 格雷码 quantum gate quantum circuit reversible logic Gray code
  • 相关文献

参考文献16

  • 1Li Z,Chen H, Song X. A novel hash-based algorithm for reversible logic circuits synthesis [J]. Journal of Computational Information Systems, 2012, 8 (11):4485-4493.
  • 2Barenco A, Bennett C, Cleve R, et al. Elementary gates for quantum computation [J]. Physical Review A,1995,52(5):3457-3467.
  • 3Miller D M,Wille R, Sasanian Z. Elementary quan- tum gate realizations for multiple-control toffoli gates[C] // Proceedings of 41st IEEE International Sym- posium on Multiple-Valued Logic. Tuusula,Finland.. IEEE, 2011 : 288-293.
  • 4Liu Y,Long G L,Sun Y. Analylic one-bit and CNOT gate constructions of general n-quhit controlled gates [J]. International Journal of Quantum Information, 2008,6 (3) : 447-462.
  • 5Tsai E,Perkowski M. Synthesis of permutative quan- tum circuits with toffoli and TISC gates[C]/ Pro- ceedings of IEEE 42nd International Symposium on Multiple-Valued Logic. Victoria, BC, Canada: IEEE, 2012:50-56.
  • 6Sasanian Z, Miller D M. Transforming MCT circuits to NCVW eircuits [C] // Workshop on Reversible Computation 2011. Gent Belgium Berlin, Heidelberg: Springer, 2011 : 163-174.
  • 7Hung W N N,Song X,Yang G,et al. Optimal synthe- sis of multiple output boolean functions using a set of quantum gates by symbolic reach ability analysis [J]. IEEE Transactions on CAD, 2006,25 (9) : 1652-1663.
  • 8Yang G W, Hung W N N,Song X,et al. Exact syn- thesis of 3-qubit quantum circuits from non-binary quantum gates using multiple-valued logic and group theory [C] //Proceedings of DATE 2005. Munich, Germany: IEEE Press, 2005 .. 434-435.
  • 9李志强,陈汉武,刘文杰,薛希玲,肖芳英.基于新型量子逻辑门库的最优NCV三量子电路快速综合算法[J].电子学报,2013,41(4):690-697. 被引量:5
  • 10Maslov D, Miller D M. Compari:,on of the cost met- rics through investigation of the relation between op- timal NCV and optimal NCT three-qubit reversible circuits FJ]. IET Computers Digital Techniques, 2007,1 (2) : 98-104.

二级参考文献26

  • 1Woods R P, Mazziotta J C, Cherry S R M. Regis- tration with automated algorithm [J]. Journal of Computer Assisted Tomography, 1993, 17(4) : 536- 546.
  • 2Pluim J P W, Maintz J B A, Viergever M A. Mutu- al information based registration of medical images: a survey [J]. IEEE Transactions on Medical Imag- ing, 2003, 22(8): 986-1004.
  • 3Coil Ignon A, Maes F, Delaere D, et al. Automated multi-modality image registration based on informa- tion theory [C]//Information Processing in Medical Imaging. Dordreeht : Kluwer Academic Publishers, 1995:263-274.
  • 4Wells W, Viola P, Astumi H, et al. Multi-modal volume registration by maximization of mutual infor- mation[J]. Medical Image Analysis, 1996, 1 (1): 35-51.
  • 5Maes F, Coll Ignon A, Vandermul E D, et al. Mul- timodality image registration by maximization of mu- tual information [J]. IEEE Transactions on Medical Imaging, 1997, 16 (2):187-198.
  • 6Loutas E, Nikou C, Pitas I. Information theory- based analysis of partial and total occlusion in object tracking[C]//Pro of the 2002 Int Conf on Image Processing. Rochester, NY : [s. n. ],2002 : 309-312.
  • 7Josien P, Antonine J, Max V. Image registration by maximization of combined mutual information and gradient information [J]. IEEE Trans on Medical Image, 2000, 19 (8) : 809-814.
  • 8Shi Y, Eberhart R. A modified particle swarm opti- mizer[C]//Proceedings of IEEE World Congress on Computational Intelligence. Honolulu:[s. n. ], 1998 : 69-73.
  • 9Kennedy J, Eberhart R. Particle swam optimization [C]// Proceeding IEEE Intermational Conference on Neural Networks. Piscataway, N J, Perth, Australi- a : IEEE, 1995,4 : 1942-1948.
  • 10Sun Jun, Bin Feng, Xu Wenbo. Particle swarm opti- mization with particles having quantum behavior [C]//Processings of 2004 Congress on Evolutionary Computation. Sonrthern Yangtze Universty, Jiang- su: IEEE, 2004:325-331.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部