期刊文献+

基于人耳感知掩蔽效应的子空间语音增强算法研究

Ear Perceptual Masking Effect Based on Subspace Speech Enhancement Algorithm
下载PDF
导出
摘要 针对传统子空间语音增强算法中,因语音增强方法中去除噪声而出现的音乐噪声和失真问题,提出了一种人耳感知掩蔽效应的子空间语音增强算法,并结合频域到特征值域的变换,在Bark域内实现人耳的感知掩蔽效应的语音增强。实验结果表明,该算法在白噪声和有色噪声的背景下,与传统子空间语音增强算法相比,不仅提高了语音信号的信噪比,而且减少了语音失真和音乐噪声,提高了增强后语音的听觉质量。 To address the speech distortion and music noise in the traditional subspace speech enhance- ment algorithm.This paper presented a perceptual masking effect of human ear subspace speech enhance- ment algorithm and incorporated into frequency domain to the transform of eigenvalue domain.At the same time,to realize perceptual masking effect of human ear for speech enhancement in Bark domain.Experimental results show the proposed algorithm not only improves the signal-to-noise ratio of speech signals,but also reduces speech distortion and music noise than the traditional subspace speech enhancement algorithm in white noise and colored noise background,to improve the quality of the enhanced speech hearing.
作者 陈胜 徐岩
出处 《电子质量》 2014年第12期80-84,共5页 Electronics Quality
基金 国家自然科学基金项目(61461024) 甘肃省自然科学基金项目(3ZS061-A25-056)
关键词 语音增强 子空间 掩蔽效应 去噪 特征值域 speech enhancement subspace masking effect denoising eigenvalue domain
  • 相关文献

参考文献4

二级参考文献38

  • 1陶智,赵鹤鸣,龚呈卉.基于听觉掩蔽效应和Bark子波变换的语音增强[J].声学学报,2005,30(4):367-372. 被引量:39
  • 2Ephraim Y, Van Trees H L, A signal subspace approach for speech enhancement. IEEE Transaction on Speech and Audio Processing, 1995; 3(4): 251-266.
  • 3You C H, Rahardja S, Koh S N. Audible noise reduction in eigendomain for speech enhancement. IEEE Transaction on Audio, Speech and Language Processing, 2007; 15(6): 1753-1765.
  • 4Virag N. Single channel speech enhancement system based on masking properties of the human auditory system. IEEE Trans. Speech Audio Processing, 1999; 7:126-37.
  • 5Hu Y, Loizou P C. A generalized subspace approach for enhancing speech corrupted by colored noise. IEEE Transaction on Speech and Audio Processing, 2003; 11(4): 334- 341.
  • 6Gazor S, Zhang W, Speech probability distribution. IEEE Signal Processing Letters, 2003; 10(7): 204-207.
  • 7Martin R. Speech enhancement using MMSE short time spectral estimation with Gamma distributed speech priors. Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Orlando, FL, May 2002:1253-1256.
  • 8Manohar K, Rao P. Speech enhancement in nonstationary noise environments using noise properties. Speech Comm., 2006; 48:96-109.
  • 9Zwicker E, Terhardt E. Analytical expressions for criticalband rate and critical bandwidth as a function of frequency. J. Acoust. Soc. Am., 1980; 68(5): 1523-1525.
  • 10Jabloun F, Champagne B. Incorporating the human hearing properties in the signal subspace approach for speech enhancement. IEEE Transaction on Speech and Audio Processing, 2003; 11(6): 700-708.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部