期刊文献+

基于部分可控性矩阵的模型降阶方法及误差分析

Model Reduction Based on Partial Block Controllability Matrix and Its Error Analysis
下载PDF
导出
摘要 针对单输入单输出系统,利用部分可控性矩阵的M-P广义逆作为集结矩阵,提出了一种新的近似集结法模型降阶方法。首先给出了当系统可控与不可控时的2种降阶模型,然后通过误差最小分析归结为一种降阶模型,并利用向量到子空间的距离给出了不同阶降阶模型误差的一个简单计算方法。以此误差作为标准,可以方便地选择满足需要的降阶阶数及降阶模型。最后以实例表明了该方法的有效性和应用性。 For the single input and single output linear system,a new method of approximately aggregated model reduction is presented by using the Moore-Penrose generalized inverse of a partial block controllability matrix as an aggregation matrix.Two aggregated order reduction models are presented firstly under the condition that the system is controllable and uncontrollable,and then a unique least error reduced model is integrated no matter whether the system is controllable or not.A simple method is deduced to compute the errors of all order reduced models,which are the distances from some known vectors to some certain subspaces.The errors of all order reduced models can be used as a model reduced order selection criterion and according to this the best order reduced model can be chosen easily.Some examples are shown to verify the validity and feasibility of this method.
作者 高遵海 林益
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2014年第6期1-5,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(61179032 11301405)
关键词 模型降阶 集结法 可控性矩阵 最小范数最小二乘解 广义逆 model reduction aggregation method controllability matrix minimum norm least squares generalized inverse
  • 相关文献

参考文献9

  • 1Wilhelmus H A, $childers Henk A. Van der Vorst,etal. Model order reduction: theory, research aspects and applications [M].Berlin: Springer, 2008.
  • 2ZuQing Qu. Model order reduction techniques with ap- plications in finite element analysis [M]. Berlin: Springer, 2004.
  • 3Peter Benner, Volker Mehrmann, Sorensen Danny C. Dimension reduction of large-scale systems[M].Berlin: Springer, 2005.
  • 4Antoulas A C, Sorensen D C, Gugercin S. A survey of model reduction methods for large scale systems [J]. Contemporary mathematics, 2001, 280: 193-219.
  • 5Gugercin S. Projection methods for model reduction of large-scale dynamical systems [D]. Rice:Rice universi- ty, 2002.
  • 6Freund R W. Model reduction methods based on Kry- lov subspaces [J]. Acta numerica, 2003,12:267 - 319.
  • 7Serkan Gugercin, An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems linear, algebra and its applications [J]. 2008, 428 (8-9) :1964-1986.
  • 8Grimme E J. Krylov projection methods for model re- duction[D]. Illinois : University of Illinois, 1997.
  • 9Zhaojun Bai. Krylov subspace techniques for reduced- order modeling of large-scale dynamical systems [J]. Applied numerical mathematics, 2002, 43 (1-2) : 9-44.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部