期刊文献+

干涉式量子定位辅助卫星导航周跳探测与修复方法 被引量:2

A Method of Cycle Slips Detection and Recovery Aided by Interferometric Quantum Position System in Satellite Navigation
下载PDF
导出
摘要 快速准确对周跳进行探测与修复是卫星导航高精度定位必须解决的关键问题。干涉式量子定位系统达到高精度必须具有良好PDOP(位置精度因子),但是受基线布置的影响,在整个覆盖区的PDOP并不能保证都是理想的。提出了利用干涉式量子定位某个方向高精度测距信息辅助卫星导航,进行周跳探测与修复方法。推导了干涉式量子定位与卫星导航网络RTK两者结合的定位方程,在新的定位模型下,采用Household变换以及LAMBDA算法,充分利用量子高精度测距所提供的信息,逐历元计算出卫星导航RTK测量中双差的整周模糊度,从而根据该模糊度的变化进行周跳的探测与修复。仿真分析表明:该方法可以在单历元内检测到周跳的存在,并在后续的短历元内正确地修复周跳。 Quick and precise detection and recovery of cycle slips are a key issue to be solved in high precise positioning of satellite navigation.In order to achieve high precision positioning,the interferometric Quantum Positioning System(QPS)must provide a good Position Dilution of Precision(PDOP).The PDOP is not ideal throughout coverage area under the influence of different baseline layouts.A new method of cycle slips detection and recovery is proposed by utilizing the precise quantum ranging of the interferometric Quantum Positioning System to locate at a certain direction in aid of a satellite navigation and cycle slips detection and recovery.The positioning equation of interferometric Quantum Positioning System(QPS)integrated with satellite navigation network RTK is deduced.Under the new positioning model Household transformations and Least-squares Ambiguity Decorrelation Adjustment(LAMBDA)algorithm are adopted to determine the Double Difference Integral Ambiguity(DDIA)of satellite navigation network RTK by means of precise quantum ranging.Cycle slips can be detected and recovered according to variation ofDDIA.The simulation results show that the method can determine cycle slips in an epoch and recover the cycle slips correctly within subsequent short epochs.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2014年第6期22-27,共6页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(61203201)
关键词 干涉式量子定位 周跳探测修复 位置精度因子 网络RTK 组合定位 interferometric Quantum Positioning System cycle slips detection and correction positional dilution of precision the network RTK integrated positioning
  • 相关文献

参考文献14

  • 1Raquet J, Laehapelle G. RTK positioning with multi- ple reference stations[J].GPS world, 2000, 12(4) : 48-53.
  • 2Chang X W, Paige C C,Yin L. Code and carrier phase based short baseline GPS positioning: computational aspects[J]. GPS Solution, 2005, ( 11 ) : 72-83.
  • 3Giovannetti V, Loyd S, Maccone L. Quantum en hanced positioning and clock synchronization [ J] Nature, 2001,412:417-419.
  • 4Giovannetti V, Lloyd S, Maccone L. Quantum-en- hanced measurements: beating the standard quantum limit [J]. Science, 2004,(306), 1330-1334.
  • 5Giovannetti V, Lloyd S, Maccone L. Generating en- tangled two-photon states with coincident frequencies [J] Phys rev lett,2002,88(18) : 183602/1-183602/4.
  • 6杨春燕,吴德伟,余永林,张豪.量子多结构分组纠缠到达时间测量增强方法[J].北京邮电大学学报,2011,34(6):33-37. 被引量:3
  • 7Bahder T B. Quantum positioning system[C]//36th Annual precise time and time Interval (PTTI) meet- ing.Wasl:ington, D.C. 7-9 December, 2004.
  • 8杨春燕,吴德伟,余永林,赵修斌.干涉式量子定位系统最优星座分布研究[J].测绘通报,2009(12):1-6. 被引量:13
  • 9杨春燕,吴德伟,卢艳娥,余永林.量子测距辅助的网络RTK定位算法研究[J].中国科学:信息科学,2010,40(4):539-548. 被引量:1
  • 10YANG Chunyan ,WU Dewei, LU yane et al.The inte- gration of GPS and interferometric quantum position system for high dynamic precise positioning[C]// IEEE international conference on information and au- tomation , 2010,06.

二级参考文献45

共引文献21

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部