期刊文献+

裂变优选重采样粒子滤波算法 被引量:3

A Study of Bootstrap Particle Filtering with Fission and Selection
下载PDF
导出
摘要 重采样在缓解粒子退化的同时带来了粒子贫化问题,针对这种情况,提出一种裂变优选重采样方法。在需要进行重采样时刻,提取出有效粒子,该时刻有效粒子对应于上一时刻的粒子确定为裂变父代粒子,裂变子代粒子数正比于各有效粒子权值,将子代粒子进行一次滤波迭代,根据该时刻量测值和权值公式计算每个子代粒子的权值,选择权值大的粒子覆盖该时刻的无效粒子。蒙特卡罗仿真表明:与裂变自举粒子滤波、随机重采样粒子滤波相比,滤波精度更高,有效粒子数增加,而且重采样后粒子退化速度变缓。 Aimed at solving the problem of particle impoverishment introduced by resampling while relie- ving degeneracy , a method of fission with selection bootstrap particle filtering (FSBPF) is proposed. At the moment of resampling, effective particles are picked up.The effective particles at this moment corre-sponding to the particles at last moment are called fission elder generation particles. The number of fission filial generation particles is in direct proportion to the weight of each effective particle, and the filial generation particles are subjected to a filtering and a generation selection. After an iteration, the weights of the new particles can be got according to the measures and the weight formula, and particles with larger weight are chosen to replace the ineffective particles at this time. The results of Monte Carlo simulations show: comparing with the fission bootstrap particle filtering (FBPF) and the random resampling particle filtering (RRPF), FSBPF are more precise in filtering results, increased in effective particles and lower in the speed of degeneracy.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2014年第6期82-86,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 陕西省自然科学基金资助项目(2011JM8023)
关键词 裂变 有效粒子 权值优选 fission effective particle weight selected
  • 相关文献

参考文献16

  • 1左军毅,张怡哲,梁彦.自适应不完全重采样粒子滤波器[J].自动化学报,2012,38(4):647-652. 被引量:36
  • 2Gordon N J,Salmond D J,Smith A F M. Novel approach to nonlinear/non-Gaus- sian Bayesian state estimation[J] . IEE proc Inst elect eng F, 1993, 140(2) :107- 113.
  • 3Arularnpalam M S, Maskell S, Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE transactions on signal processing, 2002,50 (2) : 174-188.
  • 4Doueet A, Godsill S J, Rieu C. On sequential monte carlo sampling methods for bayesian filtering [J]. Statistics and computing, 2002, 10(3) : 197-208.
  • 5Julier S J, Uhlmann J K. Unscented filtering and nonlinearestimation [J]. IEEE transactions on signal processing, 2004,92(3) :401-422.
  • 6孙枫,唐李军.Cubature粒子滤波[J].系统工程与电子技术,2011,33(11):2554-2557. 被引量:35
  • 7Thrun S, Fox D, Burgard W. Robust monte carlo iocalization for mobile robots[J]. Artificial intelligence, 2001, 128 ( 1-2 ) : 99-141.
  • 8方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 9叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 10YI Gao, SHESHENG Gao, YU Gu. Improved regularized particle filter algorithm for SINS/SAR integrated navigation [C]//IEEE 2010 international conference on computer appli cation and system modeling, 2010,970-974.

二级参考文献74

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3康莉,谢维信,黄敬雄.基于unscented粒子滤波的红外弱小目标跟踪[J].系统工程与电子技术,2007,29(1):1-4. 被引量:9
  • 4吕娜,冯祖仁.非线性交互粒子滤波算法[J].控制与决策,2007,22(4):378-383. 被引量:12
  • 5A Kong, J S Liu, W H Wong. Sequential imputations and Bayesian missing data problems [J]. Journal of the American Statistical Association (S0162-1459), 1994, 89(425): 278-288.
  • 6N J Gordon, D J Salmond, A F M Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. Radar and Signal Processing, IEE Proceedings F, 1993, 140(2): 107-113.
  • 7J S Liu, R Chert. Sequential Monte Carlo Methods for Dynamic Systems [J]. Journal of the American Statistical Association (S0162-1459), 1998, 93(443): 1032-1044.
  • 8M Bolic, P M Djuric, H Sangjin. New resampling algorithms for particle filters [C]// IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03). USA: IEEE, 2003, 211: 589-92.
  • 9M Bolic, P Djuric, S Hong. Resampling Algorithms for Particle Filters: A Computational Complexity Perspective [J]. EURASIP Journal on Applied Signal Processing (S1110-8657), 2004(15) 2267-2277.
  • 10M Bolic, P M Djuric, H Sangjin. Resampling algorithms and architectures for distributed particle filters [C]//IEEE Transactions on Signal Processing, [also see IEEE Transactions on Acoustics, Speech, and Signal Processing]. USA: IEEE, July 2005: 2442-2450.

共引文献270

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部