期刊文献+

基于情感计算的商品评论分析系统 被引量:10

A PRODUCT REVIEWS ANALYSIS SYSTEM BASED ON AFFECTIVE COMPUTING
下载PDF
导出
摘要 针对电子商务中的商品评论信息过载问题,运用情感计算理论,通过挖掘商品评论信息中的商品特征及相应的情感褒贬态度,为消费者提供一个商品特征粒度上的情感分析结果,从而帮助消费者从庞杂的商品评论中快速获取有效信息。系统首先采集指定商品的评论集并挖掘商品特征,然后结合情感语料库和词汇相似度计算,利用依存关系找到特征-极性词对以及程度副词和否定词。基于以上结果,考虑程度副词的强度,以及程度副词和否定词共现语序不同造成的语义差异,提出了商品评论情感倾向程度的计算方式。最后,进行系统实现并验证算法的有效性。实验结果表明,系统具有良好的应用效果。 To solve the product review information overload problem in e-commerce,affective computing theory is applied to provide a sen-timent analysis result for consumers in product feature granularity by mining the product features from product reviews information and the cor-responding praise and derogatory sentiment attitude so that to help the consumers get useful information rapidly from large amount of product reviews.The system first collects the assigned product reviews set and mines the product features,then performs calculation in conjunction with emotional corpus and word similarity,and finds out the feature-polarity word pair as well as degree adverb and negatives according to depend-ence relation.Based on the above results,considering the strength of degree adverb and the semantic differences caused by different word order of co-occurring of degree adverb and negatives,we present the calculation means of the sentiment inclination degree of product reviews.Final-ly,the system is implemented and the effectiveness of the algorithm is verified.Experimental result demonstrates that the system has good ap-plied effect.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第12期39-44,共6页 Computer Applications and Software
关键词 电子商务 商品评论 关联规则 句法分析 情感计算 E-commerce Product reviews Associate rule Syntax analysis Affective computing
  • 相关文献

参考文献18

二级参考文献48

共引文献660

同被引文献74

  • 1黄朝晖,李晓梅.数据可视化技术及现状[J].计算机工程与科学,1993,15(2):39-43. 被引量:13
  • 2亓莱滨.李克特量表的统计学分析与模糊综合评判[J].山东科学,2006,19(2):18-23. 被引量:336
  • 3姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 4刘金红,陆余良.主题网络爬虫研究综述[J].计算机应用研究,2007,24(10):26-29. 被引量:132
  • 5PANG B, LEE L, VAITHYANATHAN S. Thumbs up: sentiment classification using machine learning techniques [ C ]//Proceedings of the 2002 conference on empirical methods in natural language processing. Philadelphia : ACL, 2002 : 79 - 86.
  • 6HUM Q , LIU B. Mining and summarizing customer reviews [ C ]//Proceedings of the tenth ACM SIGKDD international confer- ence on knowledge discovery and data mining. Seattle: ACM, 2004:168 - 177.
  • 7POPESCU A , ETZIONI O. Extracting product features and opin- ions from reviews [ C ]//Proceedings of the 2005 conference on hu- man language technology and empirical methods in natural language processing . Vancouver: ACL,2005 : 339 -346.
  • 8KU, L W, LIANG Y T, CHEN H H. Opinion extraction, summa- rization and tracking in news and blog corpora [ C ]// Proceedings of the 2006 AAAI spring symposium - technical report. California: AAAI, 2006 : 100 - 107.
  • 9JAKOB N, GUREVYCH I. Extracting opinion targets in a single- and cross-domain setting with Conditional Random Fields [ C ]// Proceedings of the 2010 conference on empirical methods in natural language processing. Massachusetts: ACL , 2010: 1035- 1045.
  • 10SU, F Z , KATJA M. From words to senses: a case study of subjec- tivity recognition [ C ]//Proceedings of the Coling 2008 - 22nd in- ternational conference on computational linguistics. Manchester: ACL , 2008: 825- 832.

引证文献10

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部