期刊文献+

基于改进流形学习的数据分类算法

DATA CLASSIFICATION ALGORITHM BASED ON MODIFIED MANIFOLD LEARNING
下载PDF
导出
摘要 针对高维数据分类问题的特点,提出一种基于改进型局部线性嵌入LLE(Locally Linear Embedding)算法的数据降维算法,结合支持向量机SVM(Support Vector Machine)算法实现数据分类。首先,通过LLE算法降维后的数据集,按照数据集内的离差最小化,数据集间的离差最大化的原则,计算得到最优化邻近点个数;其次,将最优邻近点个数所得的降维数据作为最优结果,按一定比例选取训练集,输入SVM算法建立数据分类器;最后,将测试集输入训练完成的分类器中,实现最优化数据分类。选取Iris flower,Yale等多类数据集与传统算法进行对比实验,验证算法的可行性。实验结果表明:所提出的算法可以有效地完成数据分类,针对低维数据和高维数据分类问题具有较好的适用性和优越性,在人脸检测中也取得较好的结果。 In light of the feature of high dimensional data classification, we propose a modified LLE-based data dimensionality reduction algorithm, and implement data classification in combination with support vector machine.First we get by calculation the number of the optimised neighbouring points according to the principle of minimising the deviation within dataset and maximising the deviation between data-sets through the dataset of dimension-reduced by LLE algorithm.Secondly, we use the dimension reduction data derived from the number of optimal neighbouring points as the optimal result, choose the training sets to certain proportion and input them to SVM algorithm to set up data classifier;Finally, we input the test sets to the training-completed data classifier to implement the optimised data classification.We select the multiple-class dataset of Iris flower and Yale, etc.to carry out contrast experiments with traditional algorithms for verifying the feasibility of the algorithm.Experimental results show that the proposed algorithm can effectively implement data classification, and has better applicability and superiority for low dimension and high dimension data classification.In face detection it also obtains satisfied result.
作者 关健生
出处 《计算机应用与软件》 CSCD 北大核心 2014年第12期60-63,共4页 Computer Applications and Software
基金 福建省教育厅A类科技项目(JA12246)
关键词 数据分类 局部线性嵌入 最优邻近点个数 降维 最大化 Data classification Locally linear embedding(LLE) Optimal neighbouring points number Dimension reduction Maximisation
  • 相关文献

参考文献17

  • 1Gentle J E,Hardle W K,Mori Y C.Handbook of Computational Statistics:Concepts and Methods[M].Second Edition,Germany:Springer Press,2012:883-926.
  • 2Boucekine M,Loundou A,Baumstarck K,et al.Using the random forest method to detect a response shift in the quality of life of multiple sclerosis patients:a cohort study[J].BMC medical research methodology,2013,13(1):1-8.
  • 3Guo J M,Lin C C,Chang C H,et al.Face gender recognition with halftoning-based adaboost classifiers[C]//Proceedings of IEEE International Symposium on Circuits and Systems,Beijing:IEEE Press,2013:2497-2500.
  • 4Cruz-Mota J,Bogdanova I,Paquier B,et al.Scale invariant feature trans-form on the sphere:theory and applications[J].The International Journal of Computer Vision,2012,98(2):217-241.
  • 5Dalai N,Triggs B.Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Reco-gnition,San Diego:IEEE Press,2005:886-893.
  • 6Rencher A C,Christensen W F.Methods of Multivariate Analysis[M].Third Edition,Hoboken:Wiley Press,2012:405-433.
  • 7Wang J,Zhou Y S,Du X J,et al.Personal Credit Assessment Based on KPC A and SVM[C]//Proceedings of International Conference on Business Intelligence and Financial Engineering,Beijing:IEEE Press,2012:25-28.
  • 8Zafeiriou S,Tzimiropoulos G,Petrou M,et al.Regularized kernel discriminant analysis with a robust kernel for face recognition and verification[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(3):526-534.
  • 9Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 10Damianou A C,Titsias M K,Lawrence N D,et al..Manifold Relevance Determination[C]//Proceedings of the International Conference in Machine Learning,Edinburgh,UK,2012:1-8.

二级参考文献31

  • 1Seung H, Lee D. The manifold ways of perception [J]. Science, 2000, 290(5500) : 2268 - 2269.
  • 2Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323 - 2326.
  • 3Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319- 2323.
  • 4Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373- 1396.
  • 5He X, Niyogi P. Locality preserving projections [C] // Advances in Neural Information Processing Systems. Vancouver, Canada, 2003: 153- 160.
  • 6Chang Y, Hu C, Turk M. Manifold of facial expression [C] // Proc IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 2003:28 - 35.
  • 7Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding [C]// NIPS, Vancouver, British Columbia, Canada, 2001 : 1255 - 1262.
  • 8Kanade T, Cohn J, Tian Y. Comprehensive database for facial expression analysis [C] // IEEE Proc the Fourth International Conference on Automatic Face and Gesture Recognition. Grenoble, France, 2000:46 - 53.
  • 9Ekman P. Emotion in the Human Face [M]. New York: Cambridge University Press, 1982.
  • 10王珏,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部