期刊文献+

专家寻找模型融合框架研究 被引量:1

ON FUSION FRAMEWORK FOR EXPERT FINDING MODELS
下载PDF
导出
摘要 网络中存在着规模庞大的信息,搜索引擎如Google为网络海量信息的检索提供了有效的途径,但是许多潜藏的知识仍然无法被搜索到。而且,大量知识并未存储于文档或者数据库中,其中大部分仅存在于人脑中。对于网络中无法检索到的知识,则需要找到掌握这些知识的专家,并通过交流获取这些知识。目前专家寻找的方法有语言模型、主题模型等,这些方法各有优缺点。提出一种专家寻找模型融合框架,该框架可有效地将已有的专家寻找模型结合起来,从而提高专家寻找的精确度与鲁棒性。实验结果支持了这一结论。 In internet there is large-scale information and the search engines such as Google offer effective way to the retrieval of mass Websites information.However, many other kinds of latent knowledge can still not able to be searched.Furthermore, a great deal of knowledge does not store in documents or databases, most of them only indwell in the brain of human being.For those knowledge cannot be retrieved in Website, it needs to find the experts who master the knowledge so that we can communicate with them to acquire the knowledge. Current expert finding methods include language model, topic model and so on.Every method has its own pros and cons.In the paper we put forward a fusion framework for expert finding models, it can combine existing expert finding models together effectively and thereby improves the precision and robustness of expert finding.Experimental results also support the conclusion.
作者 陈霄咚 丁浩
出处 《计算机应用与软件》 CSCD 北大核心 2014年第12期74-79,共6页 Computer Applications and Software
基金 国家自然科学基金项目(60903076)
关键词 专家寻找 文本挖掘 语言模型 主题模型 Expert finding Text mining Language model Topic model
  • 相关文献

参考文献19

  • 1Baumard P.Tacit knowledge in organizations[M].Thousand Oaks,CA,USA:Sage Publications,2001.
  • 2Seid D,Kobsa A.Demoir:A Hybrid Architecture for Expertise Modeling and Recommender Systems[J].Enabling Technologies:Infrastructure for Collaborative Enterprises,2000:67-74.
  • 3Becerra-Fernandez I.Searching for experts on the Web:A review of contemporary expertise locator systems[J].ACM Transactions on Internet Technology,2006,6(4):333-355.
  • 4Balog K,Azzopardi L,de Rijke M.Formal models for expert finding in enterprise corpora[C]//Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,(SIGIR’06),New York,NY,USA,2006:43-50.
  • 5Balog K,Azzopardi L,de Rijke M.A language modeling framework for expert finding[J].Information Processing and Management,2009,45(1):1-19.
  • 6杨柳,张文生.专家搜索中关系证据的重要性研究[J].计算机应用研究,2010,27(11):4040-4043. 被引量:1
  • 7Rosen-Zvi M,Griffiths T,Steyvers M.The author-topic model for authors and documents[C]//Proceedings of the 20th International Conference,2004.
  • 8Tang J,Zhang J,Yao L,et al.ArnetM iner:extraction and mining of academic social networks[C]//Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,2008:990-998.
  • 9Ley M.The DBLP computer science bibliography:Evolution,research issues,perspectives[C]//String Processing and Information Retrieval.Springer,2002:481-486.
  • 10Acland A,Agarwala R,et al.Database resources of the National Center for Biotechnology Information[J].Nucleic Acids Res.2013,41:D8-D20.

二级参考文献16

  • 1CRASWELL N, VRIES A P D. Overview of the TREC 2005 enterprise track[ C]//Proc of the 14th Text Retrieval Conference. New York: [ s. n. ] ,2005.
  • 2SOBOROFF I,VRIES A P D, CRASWELL N. Overview of the TREC 2006 enterprise track [ C]//Proc of the 15th Text Retrieval Conference. New York: [ s. n. ] ,2006.
  • 3BALOG K, RIJKE M D. Non-local evidence for expert finding [ C ]// Proc of the 17th ACM Conference on Information and Knowledge Management. Napa Valley : ACM Press ,2008:489-498.
  • 4FANG Hui, ZHAI Cheng-xiang, Probabilistic models for expert finding [ C ]//Proc of the 29th European Conference on Information Retrieval Research. Rome : Springer, 2007:418 - 430.
  • 5PETKOVA D,CROFT W B. Proximity-based document representation for named entity retrieval[ C]//Proc of the 16th ACM Conference on Information and Knowledge Management. Lisbon: ACM Press, 2007 : 731-740.
  • 6CAO Yun-bo, LIU Jing-jing, BAO S. A two-stage model for expert search[ R]. [ S. l. ] :Microsoft,2008.
  • 7ZHU Jian-han, HUANG Xiang-ji, SONG Da-wei, et al. Integrating muhiple document features in language models for expert finding[ J]. Knowledge and Information Systems,:2010, 23 ( 1 ) : 29 - 54.
  • 8SERDYUKOV P, RODE H,HIEMSTRA D. Exploiting sequential dependencies for expert finding [ C ]//Proc of the 31 st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore : ACM Press ,2008:795-796.
  • 9MACDONALD C, OUNIS I. Voting techniques for expert search [ J ]. Knowledge and Information Systems, 2007,16 ( 3 ) : 259- 280.
  • 10SERDYUKOV P,RODE H, HIEMSTRA D. Modeling multi-step relevance propagation for expert finding[ C]//Proc of the 17th ACM Conference on Information and Knowledge Management. Napa Valley: ACM Press ,2008 : 1133-1142.

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部