摘要
针对农业领域植物病虫害检测问题,提出一种基于高清视频图像融合特征的支持向量机(SVM)的检测方法,实现农业生产中植物病虫害的快速检测。对每幅植物叶片图像的颜色、HSV、纹理和方向梯度直方图四种特征采用基于特征包的多特征融合方法,形成特征向量,并利用SVM分类器进行训练分类。对单特征与融合特征的SVM分类器性能进行试验比较,所提出的方法具有较高的准确率。
For plant pests and diseases detection issue in agriculture field, we propose a detection method to realise the fast detection of plant pests and diseases in agricultural production, which is based on the SVM with the feature of high-definition video image fusion.For four kinds of features of each plant leaf image, the colour, HSV, texture and directional gradient histogram, the method adopts the bag of features-based multi-features fusion approach to form the eigenvector, and uses SVM classifier to train the classification.The method raised in the paper has higher accuracy rate, this is proved by the comparative test between the SVM classifiers with the function of mono-feature and of fusion feature.
出处
《计算机应用与软件》
CSCD
北大核心
2014年第12期186-190,共5页
Computer Applications and Software
基金
国家高技术研究发展计划项目(2011AA100701)
上海市科委科技创新行动计划项目(12511501602)
上海市宝山区科委产学研合作项目(CXY-2011-11)
关键词
植物病虫害
多特征融合
特征包
支持向量机
分类器
Plant pests and diseases
Multi-feature fusion
Bag of Features
Support vector machine
Classification