期刊文献+

基于多特征融合和SVM分类器的植物病虫害检测方法 被引量:9

A PLANT PESTS AND DISEASES DETECTION METHOD BASED ON MULTI-FEATURES FUSION AND SVM CLASSIFIER
下载PDF
导出
摘要 针对农业领域植物病虫害检测问题,提出一种基于高清视频图像融合特征的支持向量机(SVM)的检测方法,实现农业生产中植物病虫害的快速检测。对每幅植物叶片图像的颜色、HSV、纹理和方向梯度直方图四种特征采用基于特征包的多特征融合方法,形成特征向量,并利用SVM分类器进行训练分类。对单特征与融合特征的SVM分类器性能进行试验比较,所提出的方法具有较高的准确率。 For plant pests and diseases detection issue in agriculture field, we propose a detection method to realise the fast detection of plant pests and diseases in agricultural production, which is based on the SVM with the feature of high-definition video image fusion.For four kinds of features of each plant leaf image, the colour, HSV, texture and directional gradient histogram, the method adopts the bag of features-based multi-features fusion approach to form the eigenvector, and uses SVM classifier to train the classification.The method raised in the paper has higher accuracy rate, this is proved by the comparative test between the SVM classifiers with the function of mono-feature and of fusion feature.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第12期186-190,共5页 Computer Applications and Software
基金 国家高技术研究发展计划项目(2011AA100701) 上海市科委科技创新行动计划项目(12511501602) 上海市宝山区科委产学研合作项目(CXY-2011-11)
关键词 植物病虫害 多特征融合 特征包 支持向量机 分类器 Plant pests and diseases Multi-feature fusion Bag of Features Support vector machine Classification
  • 相关文献

参考文献11

  • 1张竞成,袁琳,王纪华,罗菊花,杜世州,黄文江.作物病虫害遥感监测研究进展[J].农业工程学报,2012,28(20):1-11. 被引量:110
  • 2乔红波,夏斌,马新明,程登发,周益林.冬小麦病虫害的高光谱识别方法研究[J].麦类作物学报,2010,30(4):770-774. 被引量:13
  • 3张恒,陈丽娟,张岩.模糊植物病虫害图像的检测[J].计算机仿真,2012,29(1):199-201. 被引量:4
  • 4廉迎战,吴中梅,余宇航.一种基于图像的农作物病虫害诊断专家系统研究[J].现代计算机,2012,18(12):64-67. 被引量:1
  • 5Navneet Dalal,Bill Triggs.Histograms of Oriented Gradients for Human Detection[C]//Computer Vision and Pattern Recognition(CVPR),2005.
  • 6Dai Yaping,Liu Yan,Tian Yanbing.Feature-level image sequence fusion based on histograms of Oriented Gradients[C]//Computer Science and Information Technology(ICCSIT),2010.
  • 7Feifei L,Perona P.A Bayesian Hierarchical Model for Learning Natural Scene Categories[C]//Proc.of IEEE Computer Vision and Pattern Recognition,2005:524-531.
  • 8Lazebnik S,Schmid C,Ponce J.Beyond Bags of Features:Spatial Pyramid Matching for Recognizing Natural Scene Catgories[C]//Proc.IEEE Conf.Computer Vision and Pattern Recognition,2006:133-157.
  • 9Koen E A,van de Sande,Theo Gevers,et al.Evaluating Color Descriptors for Object and Scene Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9).
  • 10Jégou H,Douze M,Schmid C.Packing bag-of-features[C]//IEEE International Conference on Computer Vision(ICCV),2009.

二级参考文献39

共引文献123

同被引文献144

引证文献9

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部